Suppr超能文献

揭示ChatGPT在总结定性深度访谈方面的潜力。

Unravelling ChatGPT's potential in summarising qualitative in-depth interviews.

作者信息

Kon Mei Hui Adeline, Pereira Michelle Jessica, Molina Joseph Antonio De Castro, Yip Vivien Cherng Hui, Abisheganaden John Arputhan, Yip WanFen

机构信息

National University of Ireland, Galway, Ireland.

Health Services and Outcomes Research, National Healthcare Group, Singapore, Singapore.

出版信息

Eye (Lond). 2025 Feb;39(2):354-358. doi: 10.1038/s41433-024-03419-0. Epub 2024 Nov 5.

Abstract

BACKGROUND/OBJECTIVES: Qualitative research can be laborious and time consuming, presenting a challenge for practitioners and policymakers seeking rapid, actionable results. Data collection, transcription and analysis are the main contributors to the resource-intensive nature. OpenAI's Chat Generative Pre-trained Transformer (ChatGPT), have demonstrated potential to aid in data analysis. Our study aimed to compare themes generated by ChatGPT (3.5 and 4.0) with traditional human analysis from in-depth interviews.

METHODS

Three transcripts from an evaluation study to understand patients' experiences at a community eye clinic were used. Transcripts were first analysed by an independent researcher. Next, specific aims, instructions and de-identified transcripts were uploaded to ChatGPT 3.5 and ChatGPT 4.0. Concordance in the themes was calculated as the number of themes generated by ChatGPT divided by the number of themes generated by the researcher. The number of unrelated subthemes and time taken by both ChatGPT were also described.

RESULTS

The average time taken per transcript was 11.5 min, 11.9 min and 240 min for ChatGPT 3.5, ChatGPT 4.0 and researcher respectively. Six themes were identified by the researcher: (i) clinic's accessibility, (ii) patients' awareness, (iii) trust and satisfaction, (iv) patients' expectations, (v) willingness to return and (vi) explanation of the clinic by referral source. Concordance for ChatGPT 3.5 and 4.0 ranged from 66 to 100%.

CONCLUSION

Preliminary results showed that ChatGPT significantly reduced analysis time with moderate to good concordance compared with current practice. This highlighted the potential adoption of ChatGPT to facilitate rapid preliminary analysis. However, regrouping of subthemes will still need to be conducted by a researcher.

摘要

背景/目的:定性研究可能既费力又耗时,这给寻求快速、可操作结果的从业者和政策制定者带来了挑战。数据收集、转录和分析是导致资源密集型性质的主要因素。OpenAI的聊天生成预训练变换器(ChatGPT)已显示出有助于数据分析的潜力。我们的研究旨在将ChatGPT(3.5和4.0)生成的主题与来自深度访谈的传统人工分析进行比较。

方法

使用了一项评估研究中的三份访谈记录,以了解患者在社区眼科诊所的经历。访谈记录首先由一名独立研究人员进行分析。接下来,将具体目标、说明和去识别的访谈记录上传到ChatGPT 3.5和ChatGPT 4.0。主题的一致性计算为ChatGPT生成的主题数量除以研究人员生成的主题数量。还描述了不相关子主题的数量以及ChatGPT两者所花费的时间。

结果

ChatGPT 3.5、ChatGPT 4.0和研究人员分析每份访谈记录平均分别花费11.5分钟、11.9分钟和240分钟。研究人员确定了六个主题:(i)诊所的可达性,(ii)患者的认知,(iii)信任和满意度,(iv)患者的期望,(v)回访意愿,以及(vi)转诊来源对诊所的解释。ChatGPT 3.5和4.0的一致性范围为66%至100%。

结论

初步结果表明,与当前做法相比,ChatGPT显著减少了分析时间,一致性从中度到良好。这突出了采用ChatGPT促进快速初步分析的潜力。然而,子主题的重新分组仍需由研究人员进行。

相似文献

本文引用的文献

2
The Ethics of Using Artificial Intelligence in Qualitative Research.人工智能在定性研究中的伦理问题。
J Empir Res Hum Res Ethics. 2024 Jul;19(3):92-102. doi: 10.1177/15562646241262659. Epub 2024 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验