Sánchez-García Sergio, Povo-Retana Adrián, Marin Silvia, Madurga Sergio, Fariñas Marco, Aleixandre Nuria, Castrillo Antonio, de la Rosa Juan V, Alvarez-Lucena Carlota, Landauro-Vera Rodrigo, Prieto Patricia, Cascante Marta, Boscá Lisardo
Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid, 28029, Spain.
Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, Madrid, 28029, Spain.
Adv Healthc Mater. 2025 Jan;14(1):e2401688. doi: 10.1002/adhm.202401688. Epub 2024 Nov 6.
The cytokine storm associated with SARS-CoV-2 infection is one of the most distinctive pathological signatures in COVID-19 patients. Macrophages respond to this pro-inflammatory challenge by reprogramming their functional and metabolic phenotypes. Interestingly, human macrophages fail to express the inducible form of the NO synthase (NOS2) in response to pro-inflammatory activation and, therefore, NO is not synthesized by these cells. The contribution of exogenously added NO, via a chemical NO-donor, on the immunometabolic changes associated with the cytokine storm is investigated. By using metabolic, transcriptomic, and functional assays the effect of NO in human macrophages is evaluated and found specific responses. Moreover, through integrative fluxomic analysis, pathways modified by NO that contribute to the expression of a particular phenotype in human macrophages are identified, which includes a decrease in mitochondrial respiration and TCA with a slight increase in the glycolytic flux. A significant ROS increase and preserved cell viability are observed in the presence of NO, which may ease the inflammatory response and host defense. Also, NO reverses the cytokine storm-induced itaconate accumulation. These changes offer additional clues to understanding the potential crosstalk between NO and the COVID-19 cytokine storm-dependent signaling pathways.
与SARS-CoV-2感染相关的细胞因子风暴是新冠肺炎患者最显著的病理特征之一。巨噬细胞通过重新编程其功能和代谢表型来应对这种促炎挑战。有趣的是,人类巨噬细胞在受到促炎激活时无法表达诱导型一氧化氮合酶(NOS2),因此这些细胞不会合成一氧化氮。研究了通过化学一氧化氮供体外源添加一氧化氮对与细胞因子风暴相关的免疫代谢变化的影响。通过代谢、转录组学和功能分析评估了一氧化氮在人类巨噬细胞中的作用,并发现了特异性反应。此外,通过综合通量组学分析,确定了一氧化氮修饰的、有助于人类巨噬细胞特定表型表达的途径,其中包括线粒体呼吸和三羧酸循环减少,糖酵解通量略有增加。在有一氧化氮的情况下,观察到活性氧显著增加且细胞活力得以维持,这可能会缓解炎症反应和宿主防御。此外,一氧化氮可逆转细胞因子风暴诱导的衣康酸积累。这些变化为理解一氧化氮与新冠肺炎细胞因子风暴相关信号通路之间潜在的相互作用提供了更多线索。