M Maddin, R Rateau, A M Szucs, L Terribili, J D Rodriguez-Blanco
Department of Geology, School of Natural Sciences, Trinity College Dublin Dublin 2 Ireland
iCRAG, Department of Geology, School of Natural Sciences, Trinity College Dublin Dublin 2 Ireland.
RSC Adv. 2024 Nov 5;14(48):35305-35322. doi: 10.1039/d4ra05212a. eCollection 2024 Nov 4.
The researchers investigated the interaction between multi-component rare earth element-bearing aqueous solutions and siderite grains under hydrothermal conditions. Our study investigates the interaction between multi-component rare earth element (REE; La, Ce, Pr, Nd, Dy)-bearing aqueous solutions and siderite (FeCO) grains under hydrothermal conditions (50-205 °C). The results revealed a solution-mediated mineral replacement reaction that occurs a multi-step crystallisation pathway involving the formation of iron oxides (goethite, α-FeO(OH), and hematite, FeO), metastable REE-bearing minerals (kozoite, REE(CO)(OH), and bastnasite, REE(CO)(OH,F)), and cerianite (CeO). Siderite stability, dissolution, and subsequent mineral formation are temperature and pH-dependent. At low temperatures, REE carbonate formation is inhibited by a goethite coating, creating a partial equilibrium situation. Higher temperatures increase dissolution rates and enable kozoite and bastnasite formation. The redox behaviour of Fe and Ce combined with the temperature, and the availability of CO govern this crystallisation sequence. Continued oxidation promotes decarbonation processes by acidifying the aqueous solution, dissolving all carbonates, and resulting in hematite and cerianite crystallisation as thermodynamically stable phases. Understanding iron carbonate, oxide and REE interactions can inform new resource targets and improve recovery and separation techniques.
研究人员研究了热液条件下多组分含稀土元素水溶液与菱铁矿颗粒之间的相互作用。我们的研究考察了热液条件(50 - 205°C)下多组分含稀土元素(REE;镧、铈、镨、钕、镝)水溶液与菱铁矿(FeCO)颗粒之间的相互作用。结果揭示了一种溶液介导的矿物置换反应,该反应通过多步结晶途径发生,涉及铁氧化物(针铁矿,α - FeO(OH),和赤铁矿,Fe₂O₃)、亚稳含稀土矿物(羟碳铈矿,REE(CO₃)(OH),和氟碳铈矿,REE(CO₃)(OH,F))以及铈石(CeO₂)的形成。菱铁矿的稳定性、溶解以及随后的矿物形成取决于温度和pH值。在低温下,针铁矿涂层抑制了稀土碳酸盐的形成,形成了一种部分平衡的情况。较高的温度会提高溶解速率,并使羟碳铈矿和氟碳铈矿得以形成。铁和铈的氧化还原行为与温度以及CO₃²⁻的可用性共同控制着这个结晶序列。持续的氧化通过酸化水溶液促进脱碳过程,溶解所有碳酸盐,并导致赤铁矿和铈石结晶成为热力学稳定相态。了解碳酸铁、氧化物和稀土元素之间的相互作用可为新的资源目标提供信息,并改进回收和分离技术。