Suppr超能文献

由自养嗜热微生物共生体驱动的菱铁矿厌氧铁循环。

Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium.

机构信息

Winogradsky Institute of Microbiology, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Prospekt 60 Letiya Oktyabrya 7, bld. 2, Moscow, 117312, Russian Federation.

Department of Physics, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russian Federation.

出版信息

Sci Rep. 2020 Dec 10;10(1):21661. doi: 10.1038/s41598-020-78605-7.

Abstract

Using a sample from a terrestrial hot spring (pH 6.8, 60 °C), we enriched a thermophilic microbial consortium performing anaerobic autotrophic oxidation of hydrothermal siderite (FeCO), with CO/bicarbonate as the electron acceptor and the only carbon source, producing green rust and acetate. In order to reproduce Proterozoic environmental conditions during the deposition of banded iron formation (BIF), we incubated the microbial consortium in a bioreactor that contained an unmixed anoxic layer of siderite, perfectly mixed N/CO-saturated liquid medium and microoxic (2% O) headspace. Long-term incubation (56 days) led to the formation of magnetite (FeO) instead of green rust as the main product of Fe(II) oxidation, the precipitation of newly formed metabolically induced siderite in the anoxic zone, and the deposition of hematite (FeO) on bioreactor walls over the oxycline boundary. Acetate was the only metabolic product of CO/bicarbonate reduction. Thus, we have demonstrated the ability of autotrophic thermophilic microbial consortium to perform a short cycle of iron minerals transformation: siderite-magnetite-siderite, accompanied by magnetite and hematite accumulation. This cycle is believed to have driven the evolution of the early biosphere, leading to primary biomass production and deposition of the main iron mineral association of BIF.

摘要

我们使用来自陆地温泉(pH 值为 6.8,60°C)的样本,富集了一种嗜热微生物群落,该群落能够在无氧条件下进行水热菱铁矿(FeCO)的自养氧化,以 CO/碳酸氢盐作为电子受体和唯一碳源,生成绿锈和乙酸盐。为了在形成条带状铁建造(BIF)时再现元古代的环境条件,我们将微生物群落培养在生物反应器中,该生物反应器包含未混合的菱铁矿无氧层、完全混合的 N/CO 饱和液体培养基和微氧(2% O)顶空。长期培养(56 天)导致磁铁矿(FeO)而不是绿锈作为 Fe(II)氧化的主要产物形成,新形成的代谢诱导菱铁矿在无氧区沉淀,以及赤铁矿(FeO)在氧化还原边界上的生物反应器壁上沉积。乙酸盐是 CO/碳酸氢盐还原的唯一代谢产物。因此,我们证明了自养嗜热微生物群落能够进行铁矿物转化的短周期:菱铁矿-磁铁矿-菱铁矿,同时伴随着磁铁矿和赤铁矿的积累。这个循环被认为推动了早期生物圈的演化,导致了主要的生物量生产和 BIF 的主要铁矿物组合的沉积。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2811/7729950/ef5dac75d26d/41598_2020_78605_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验