Tokuda Keita, Katori Yuichi
Faculty of Health Data Science, Juntendo University, Urayasu, Japan.
The School of Systems Information Science, Future University Hakodate, Hakodate, Japan.
Front Artif Intell. 2024 Oct 22;7:1451926. doi: 10.3389/frai.2024.1451926. eCollection 2024.
Nonlinear and non-stationary processes are prevalent in various natural and physical phenomena, where system dynamics can change qualitatively due to bifurcation phenomena. Machine learning methods have advanced our ability to learn and predict such systems from observed time series data. However, predicting the behavior of systems with temporal parameter variations without knowledge of true parameter values remains a significant challenge.
This study uses reservoir computing framework to address this problem by unsupervised extraction of slowly varying system parameters from time series data. We propose a model architecture consisting of a slow reservoir with long timescale internal dynamics and a fast reservoir with short timescale dynamics. The slow reservoir extracts the temporal variation of system parameters, which are then used to predict unknown bifurcations in the fast dynamics.
Through experiments on chaotic dynamical systems, our proposed model successfully extracted slowly varying system parameters and predicted bifurcations that were not included in the training data. The model demonstrated robust predictive performance, showing that the reservoir computing framework can handle nonlinear, non-stationary systems without prior knowledge of the system's true parameters.
Our approach shows potential for applications in fields such as neuroscience, material science, and weather prediction, where slow dynamics influencing qualitative changes are often unobservable.
非线性和非平稳过程在各种自然和物理现象中普遍存在,在这些现象中,系统动力学可能会由于分岔现象而发生质的变化。机器学习方法提高了我们从观测到的时间序列数据中学习和预测此类系统的能力。然而,在不知道真实参数值的情况下预测具有时间参数变化的系统行为仍然是一项重大挑战。
本研究使用储层计算框架来解决这个问题,通过从时间序列数据中无监督地提取缓慢变化的系统参数。我们提出了一种模型架构,它由一个具有长时间尺度内部动力学的慢储层和一个具有短时间尺度动力学的快储层组成。慢储层提取系统参数的时间变化,然后用于预测快动力学中的未知分岔。
通过对混沌动力系统的实验,我们提出的模型成功地提取了缓慢变化的系统参数,并预测了训练数据中未包含的分岔。该模型展示了强大的预测性能,表明储层计算框架可以在没有系统真实参数先验知识的情况下处理非线性、非平稳系统。
我们的方法在神经科学、材料科学和天气预报等领域显示出应用潜力,在这些领域中,影响质的变化的慢动力学往往是不可观测的。