Suppr超能文献

通过机器学习进行吸引子重构。

Attractor reconstruction by machine learning.

作者信息

Lu Zhixin, Hunt Brian R, Ott Edward

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA.

出版信息

Chaos. 2018 Jun;28(6):061104. doi: 10.1063/1.5039508.

Abstract

A machine-learning approach called "reservoir computing" has been used successfully for short-term prediction and attractor reconstruction of chaotic dynamical systems from time series data. We present a theoretical framework that describes conditions under which reservoir computing can create an empirical model capable of skillful short-term forecasts and accurate long-term ergodic behavior. We illustrate this theory through numerical experiments. We also argue that the theory applies to certain other machine learning methods for time series prediction.

摘要

一种名为“储层计算”的机器学习方法已成功用于从时间序列数据对混沌动力系统进行短期预测和吸引子重构。我们提出了一个理论框架,该框架描述了储层计算能够创建一个能够进行熟练短期预测和准确长期遍历行为的经验模型的条件。我们通过数值实验来说明这一理论。我们还认为该理论适用于某些其他用于时间序列预测的机器学习方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验