Topff Laurens, Petrychenko Liliana, Jain Neeraj, Lingier Sara, Bertels Jeroen, Astudillo Patricio, Prosec Milan, Menéndez Fernández-Miranda Pablo, Gevaert Olivier, Smits Marion, Derks Sophie, Verhaak Eline, Hanssens Patrick E J, Marco de Lucas Enrique, Sutil Rodrigo, Dominguez Pablo D, Negoita Adina, Visser Ernst, Corral Fontecha David, Braun Loes M M, Brandsma Dieta, Visser Jacob J, Ranschaert Erik R, Groot Lipman Kevin B W, Beets-Tan Regina G H
Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
GROW-Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands.
Radiology. 2025 Jun;315(3):e242416. doi: 10.1148/radiol.242416.
Background With the increasing incidence of brain metastases (BMs), artificial intelligence models have shown promise in assisting with the detection and volumetric analysis of lesions at MRI. However, current models are limited in identifying small lesions and lack generalizability. Purpose To develop a generalizable deep learning system for detecting, segmenting, and longitudinally tracking BMs of any size at MRI. Materials and Methods In this retrospective study, a data-centric approach to deep learning model development was used. A multicenter dataset was collected, comprising pre- and/or posttreatment MRI scans from patients with BMs and MRI scans from patients with cancer without BMs (December 2015 to August 2023). Iterative data annotation by radiologists with systematic quality control increased the consistency of reference segmentations. A modified nnU-Net framework, with robust data preprocessing and augmentation, was used. Lesion-wise detection metrics and segmentation performance, Dice similarity coefficient, and normalized surface distance were evaluated. Results In total, 1985 scans from 1623 patients (mean age, 62.0 years ± 12.2 [SD]; 743 female patients, 157 patients of unknown sex), with 5552 BMs, were included. BMs were present in 64.8% of the scans (1286 of 1985), 36.0% (463 of 1286) of which were posttreatment scans. The model was trained on 1451 scans acquired on 30 different scanners. In internal testing ( = 223), sensitivity was 98.0% (95% CI: 96.3, 99.0; 449 of 458 lesions). In external testing ( = 311), sensitivity was 97.4% (95% CI: 96.2, 98.2; 935 of 960; = .58), with a mean of 0.6 false positives per patient. The sensitivity remained high for all lesion sizes, including those less than 3 mm in diameter (93.3% [95% CI: 89.1, 96.0]; 196 of 210). Median Dice similarity coefficient was 0.89 and 0.90 for the internal and external test datasets, respectively ( = .13). Median normalized surface distance was 0.99 for both datasets. Conclusion The deep learning system demonstrated high performance and generalizability in detecting and segmenting BMs of all sizes on pre- and posttreatment MRI scans. © RSNA, 2025
背景 随着脑转移瘤(BMs)发病率的不断上升,人工智能模型在辅助磁共振成像(MRI)病变检测和体积分析方面显示出了前景。然而,目前的模型在识别小病变方面存在局限性且缺乏通用性。目的 开发一种通用的深度学习系统,用于在MRI上检测、分割和纵向跟踪任何大小的BMs。材料与方法 在这项回顾性研究中,采用了以数据为中心的深度学习模型开发方法。收集了一个多中心数据集,包括BMs患者的治疗前和/或治疗后MRI扫描以及无BMs的癌症患者的MRI扫描(2015年12月至2023年8月)。放射科医生进行迭代数据标注并进行系统的质量控制,提高了参考分割的一致性。使用了经过改进的nnU-Net框架,具有强大的数据预处理和增强功能。评估了病变层面的检测指标、分割性能、Dice相似系数和归一化表面距离。结果 总共纳入了1623例患者的1985次扫描(平均年龄62.0岁±12.2[标准差];743例女性患者,157例性别未知患者),其中有5552个BMs。64.8%(1985例中的1286例)的扫描存在BMs,其中36.0%(1286例中的463例)为治疗后扫描。该模型在30台不同扫描仪上采集的1451次扫描上进行训练。在内部测试(n = 223)中,灵敏度为98.0%(95%置信区间:96.3,99.0;458个病变中的449个)。在外部测试(n = 311)中,灵敏度为97.4%(95%置信区间:96.2,98.2;960个中的935个;P = 0.58),每位患者平均有0.6个假阳性。对于所有病变大小,包括直径小于3 mm的病变,灵敏度仍然很高(93.3%[95%置信区间:89.1,96.0];210个中的196个)。内部和外部测试数据集的Dice相似系数中位数分别为0.89和0.90(P = 0.13)。两个数据集的归一化表面距离中位数均为0.99。结论 该深度学习系统在检测和分割治疗前和治疗后MRI扫描上的所有大小的BMs方面表现出高性能和通用性。©RSNA,2025