Roubin R, Dulioust A, Haye-Legrand I, Ninio E, Benveniste J
J Immunol. 1986 Mar 1;136(5):1796-802.
Activated peritoneal macrophages (M phi) from mice injected with Bacilli Calmette-Guérin, trehalose dimycolate, a defined immunostimulant derived from Mycobacterium tuberculosis, or streptococci C74 (St), synthesized two to three times less paf-acether (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in response to a zymosan challenge than did (0.7 +/- 0.2 nmol/mg protein) resident-M phi (R-M phi). To assess at which step the paf-acether biosynthetic pathway was impaired, the content in phospholipid paf-acether precursors was evaluated. The alkyl-acyl-glycerophosphocholine content was comparable in R-M phi (50.4 +/- 18.6 nmol/mg protein) and activated-M phi (40.0 +/- 6.5 to 63.9 +/- 7.7 nmol/mg protein), as well as the lyso paf-acether content (0.85 +/- 0.18 nmol/mg protein for R-M phi vs 0.63 +/- 0.16 to 1.23 +/- 0.21 nmol/mg protein for activated macrophages). The nonlimiting rate of the phospholipid substrate was strengthened by experiments showing that incubation of the various populations with lyso paf-acether did not yield increased amounts of paf-acether. Similarly, incubation of R-M phi or St-M phi with sodium acetate increased paf-acether production to the same extent in both populations, ruling out the acetate substrate deficiency as the cause of the impaired production. The level of acetyltransferase activity, the enzyme that transfers an acetate moiety of acetyl coenzyme A (acetyl-CoA) onto lyso paf-acether, was very low in thioglycolate (TG)-elicited M phi but high in R-M phi and activated ones. In all cases, it was increased by two to three times upon zymosan challenge. This suggested that increased paf-acether catabolism and not impaired anabolism could be responsible for the marked reduced formation noted in activated macrophages. The addition of acetyl-CoA (200 microM) to the various macrophage monolayers restored paf-acether formation by activated cells to R-M phi values but with delayed kinetics as compared with paf-acether formation induced by zymosan. The enhancing effect of acetyl-CoA on paf-acether production was inhibited upon oleyl-CoA addition, suggesting that acetyl-CoA may increase paf-acether production by preventing the reacylation of lyso paf-acether resulting from paf-acether degradation. In conclusion, the paf-acether output in some inflammatory macrophages may be regulated by the level of acetyltransferase activity, because it is observed in TG-M phi. However, we present the first evidence for another mechanism of regulation, most probably related to the deacylation/reacylation of paf-acether precursors and metabolites.
给小鼠注射卡介苗、海藻糖二霉菌酸酯(一种源自结核分枝杆菌的特定免疫刺激剂)或C74链球菌后,其活化的腹腔巨噬细胞(M phi)在受到酵母聚糖刺激时,合成的血小板活化因子乙酰醚(1-O-烷基-2-乙酰基-sn-甘油-3-磷酸胆碱)比驻留巨噬细胞(R-M phi)少两到三倍(0.7±0.2 nmol/mg蛋白质)。为了评估血小板活化因子乙酰醚生物合成途径在哪个步骤受损,对磷脂血小板活化因子乙酰醚前体的含量进行了评估。R-M phi(50.4±18.6 nmol/mg蛋白质)和活化巨噬细胞(40.0±6.5至63.9±7.7 nmol/mg蛋白质)中的烷基酰基甘油磷酸胆碱含量相当,溶血血小板活化因子乙酰醚含量也是如此(R-M phi为0.85±0.18 nmol/mg蛋白质,而活化巨噬细胞为0.63±0.16至1.23±0.21 nmol/mg蛋白质)。实验表明,用溶血血小板活化因子乙酰醚孵育不同细胞群体并不会产生更多的血小板活化因子乙酰醚,这强化了磷脂底物并非限制因素这一观点。同样,用醋酸钠孵育R-M phi或链球菌刺激的巨噬细胞(St-M phi),两个群体中血小板活化因子乙酰醚的产量都有相同程度的增加,排除了醋酸盐底物缺乏是产量受损原因的可能性。硫代乙醇酸盐(TG)诱导产生的巨噬细胞中,将乙酰辅酶A(acetyl-CoA)的醋酸基团转移到溶血血小板活化因子乙酰醚上的乙酰转移酶活性水平非常低,但在R-M phi和活化巨噬细胞中活性很高。在所有情况下,酵母聚糖刺激后该活性会增加两到三倍。这表明,血小板活化因子乙酰醚分解代谢增加而非合成代谢受损可能是活化巨噬细胞中其生成显著减少的原因。向各种巨噬细胞单层中添加乙酰辅酶A(200 microM)可使活化细胞的血小板活化因子乙酰醚生成恢复到R-M phi的水平,但与酵母聚糖诱导的血小板活化因子乙酰醚生成相比,动力学延迟。添加油酰辅酶A后,乙酰辅酶A对血小板活化因子乙酰醚生成的增强作用受到抑制,这表明乙酰辅酶A可能通过防止血小板活化因子乙酰醚降解产生的溶血血小板活化因子乙酰醚再酰化来增加血小板活化因子乙酰醚的生成。总之,在某些炎性巨噬细胞中,血小板活化因子乙酰醚的输出可能受乙酰转移酶活性水平的调节,正如在TG诱导的巨噬细胞中所观察到的那样。然而,我们首次提出了另一种调节机制的证据,很可能与血小板活化因子乙酰醚前体和代谢产物的脱酰化/再酰化有关。