Suppr超能文献

利用第一性原理计算影响金属材料中电子和声子热导率的关键因素。

Critical factors influencing electron and phonon thermal conductivity in metallic materials using first-principles calculations.

作者信息

Xia Yonglin, Zhang Xinyu, Wang Ao, Sheng Yufei, Xie Han, Bao Hua

机构信息

University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.

Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium.

出版信息

J Phys Condens Matter. 2024 Nov 15;37(5). doi: 10.1088/1361-648X/ad8f82.

Abstract

Understanding the thermal transport of various metals is crucial for many energy-transfer applications. However, due to the complex transport mechanisms varying among different metals, current research on metallic thermal transport has been focusing on case studies of specific types of metallic materials. A general understanding of the transport mechanisms across a broad spectrum of metallic materials is still lacking. In this work, we perform first-principles calculations to determine the thermal conductivity of 40 representative metallic materials, within a range of 8-456 W mK. Our predicted values of electrical and thermal conductivity are in good agreement with available experimental results. Based on the data of separated electron and phonon thermal conductivity, we employ a statistical approach to examine nine factors derived from previous understandings and identify the critical factors determining these properties. For electrons, although a high electron density of states around the Fermi level implies more conductive electrons, we find it counterintuitively correlates with low electron thermal conductivity. This is attributed to the enlarged electron-phonon scattering channels induced by substantial electrons around the Fermi level. Regarding phonons, we demonstrate that among all the studied factors, Debye temperature plays the most significant role in determining the phonon thermal conductivity, despite the phonon-electron scattering being non-negligible in some transition metals. Correlation analysis suggests that Debye temperature has the highest positive correlation coefficient with phonon thermal conductivity, as it corresponds to a large phonon group velocity. Additionally, Young's modulus is found to be closely correlated with high phonon thermal conductivity and contribution. Our findings of simple factors that closely correlate with the electron and phonon thermal conductivity provide a general understanding of various metallic materials. They may facilitate the discovery of novel materials with extremely high or low thermal conductivity, or be used as descriptors in machine learning to accurately predict the thermal conductivity of metals in the future.

摘要

了解各种金属的热传输对于许多能量转移应用至关重要。然而,由于不同金属之间的传输机制复杂多样,目前关于金属热传输的研究一直集中在特定类型金属材料的案例研究上。对于广泛的金属材料的传输机制仍缺乏全面的了解。在这项工作中,我们进行了第一性原理计算,以确定40种代表性金属材料在8 - 456 W mK范围内的热导率。我们预测的电导率和热导率值与现有的实验结果吻合良好。基于分离的电子和声子热导率数据,我们采用统计方法来研究从先前认识中得出的九个因素,并确定决定这些性质的关键因素。对于电子,尽管费米能级附近的高电子态密度意味着更多的传导电子,但我们发现它与低电子热导率存在反直觉的相关性。这归因于费米能级附近大量电子引起的电子 - 声子散射通道的扩大。关于声子,我们证明在所有研究的因素中,德拜温度在决定声子热导率方面起着最重要的作用,尽管在一些过渡金属中声子 - 电子散射不可忽略。相关性分析表明,德拜温度与声子热导率具有最高的正相关系数,因为它对应于较大的声子群速度。此外,发现杨氏模量与高声子热导率和贡献密切相关。我们发现的与电子和声子热导率密切相关的简单因素为各种金属材料提供了全面的理解。它们可能有助于发现具有极高或极低热导率的新型材料,或者在机器学习中用作描述符,以便未来准确预测金属的热导率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验