Cho Sangeun, Sree Vijaya Gopalan, Fulari Akash V, Park Sanghyuk, Mei Ming, Kim Minju, Jana Atanu, Das Deblina, Im Hyunsik, Kyhm Kwangseuk, Taylor Robert A
Division of System Semiconductor, College of AI Convergence, Dongguk University, Seoul 04620, South Korea.
Department of Physics, Dongguk University, Seoul 04620, South Korea.
J Colloid Interface Sci. 2025 Feb 15;680(Pt A):215-225. doi: 10.1016/j.jcis.2024.10.193. Epub 2024 Nov 1.
The main challenges in the optical and morphological tuning of highly stable orange-emitting Mn-doped perovskite include achieving uniform dopant distribution, maintaining structural integrity under varying environmental conditions, and optimizing luminescent efficiency while minimizing non-radiative recombination pathways. This study presents a novel, one-step, water-induced ultrafast synthesis strategy for obtaining Mn-doped mixed-halide perovskites at room temperature. This technique offers morphological control by varying the amount of water-based precursor, allowing the tuning of resulting nanostructures to produce nanoplatelets, nanocubes, or nanowires. In the growth mechanism, Mn dopants affect the crystal structure by promoting stable growth and uniform doping at higher concentrations, while water improves ion dispersion, reaction kinetics, and passivation, facilitating optimal crystal growth and the formation of desired nanostructure morphologies. The synthesized Mn:CsPbBrCl NCs form a highly stable colloidal solution with approximately 100 % emission stability for up to one year under ambient conditions and retain 98.9 % of its photoluminescence after aging at 85 °C for 200 h. We also explore the PL mechanism in Mn:CsPbBrCl NCs, where temperature-dependent PL analysis reveals energy transfer from CsPbBrCl exciton states to Mn-doped levels, enhancing PL intensity, with both exciton and Mn emissions exhibiting a blue shift as the temperature increased from 6 K to 300 K, attributed to lattice expansion and electron-phonon interactions. A warm white light emission is achieved with excellent stability and an exceptionally wide color gamut coverage. The proposed strategy has the potential to enable large-scale synthesis and fabrication of highly stable perovskite devices for high-quality display and lighting applications.
高稳定性橙色发光锰掺杂钙钛矿的光学和形态调控面临的主要挑战包括实现均匀的掺杂剂分布、在不同环境条件下保持结构完整性、优化发光效率同时最小化非辐射复合路径。本研究提出了一种新颖的、一步法、水诱导超快合成策略,用于在室温下获得锰掺杂的混合卤化物钙钛矿。该技术通过改变水基金属有机前驱体的量来实现形态控制,从而调整所得纳米结构以制备纳米片、纳米立方体或纳米线。在生长机制中,锰掺杂剂通过促进更高浓度下的稳定生长和均匀掺杂来影响晶体结构,而水则改善离子分散、反应动力学和钝化作用,促进最佳晶体生长和所需纳米结构形态的形成。合成的Mn:CsPbBrCl纳米晶形成了一种高度稳定的胶体溶液,在环境条件下长达一年具有约100%的发射稳定性,在85°C下老化200小时后仍保留其98.9%的光致发光。我们还探索了Mn:CsPbBrCl纳米晶中的光致发光机制,其中温度相关的光致发光分析揭示了从CsPbBrCl激子态到锰掺杂能级的能量转移,增强了光致发光强度,随着温度从6K升高到300K,激子和锰发射均表现出蓝移,这归因于晶格膨胀和电子 - 声子相互作用。实现了具有优异稳定性和异常宽色域覆盖的暖白色发光。所提出的策略有可能实现大规模合成和制造用于高质量显示和照明应用的高稳定性钙钛矿器件。