Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, France; Araya Inc., Tokyo, Japan.
Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, France.
Dev Cogn Neurosci. 2024 Dec;70:101470. doi: 10.1016/j.dcn.2024.101470. Epub 2024 Oct 30.
Cognitive computational neuroscience has received broad attention in recent years as an emerging area integrating cognitive science, neuroscience, and artificial intelligence. At the heart of this field, approaches using encoding models allow for explaining brain activity from latent and high-dimensional features, including artificial neural networks. With the notable exception of temporal response function models that are applied to electroencephalography, most prior studies have focused on adult subjects, making it difficult to capture how brain representations change with learning and development. Here, we argue that future developmental cognitive neuroscience studies would benefit from approaches relying on encoding models. We provide an overview of encoding models used in adult functional magnetic resonance imaging research. This research has notably used data with a small number of subjects, but with a large number of samples per subject. Studies using encoding models also generally require task-based neuroimaging data. Though these represent challenges for developmental studies, we argue that these challenges may be overcome by using functional alignment techniques and naturalistic paradigms. These methods would facilitate encoding model analysis in developmental neuroimaging research, which may lead to important theoretical advances.
认知计算神经科学近年来受到广泛关注,它是一个新兴的领域,融合了认知科学、神经科学和人工智能。该领域的核心方法是使用编码模型来解释从潜在的高维特征中得出的大脑活动,包括人工神经网络。除了应用于脑电图的时间响应函数模型外,大多数先前的研究都集中在成年受试者上,这使得难以捕捉大脑表征如何随着学习和发展而变化。在这里,我们认为未来的发展认知神经科学研究将受益于依赖编码模型的方法。我们提供了在成人功能磁共振成像研究中使用的编码模型概述。这些研究显著地使用了少数受试者的数据,但每个受试者的样本数量很多。使用编码模型的研究也通常需要基于任务的神经影像学数据。虽然这些代表了发展研究的挑战,但我们认为,通过使用功能对齐技术和自然主义范式,可以克服这些挑战。这些方法将促进发展神经影像学研究中的编码模型分析,这可能会带来重要的理论进展。