Jiang Xun, Zhang Zhuoxiang, Wu Xiuming, Li Changmei, Sun Xuan, Wu Fengyan, Yang Aiguo, Yang Changqing
Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, PR China.
Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, PR China.
Metab Eng. 2024 Nov;86:308-325. doi: 10.1016/j.ymben.2024.11.002. Epub 2024 Nov 4.
Engineering of a specialized metabolic pathway in plants is a promising approach to produce high-value bioactive compounds to address the challenges of climate change and population growth. Understanding the interaction between the heterologous pathway and the native metabolic network of the host plant is crucial for optimizing the engineered system and maximizing the yield of the target compound. In this study, we performed transcriptomic, metabolomic and metagenomic analysis of tobacco (Nicotiana tabacum) plants engineered to produce betanin, an alkaloid pigment that is found in Caryophyllaceae plants. Our data reveals that, in a dose-dependent manor, the biosynthesis of betanin promotes carbohydrate metabolism and represses nitrogen metabolism in the leaf, but enhances nitrogen assimilation and metabolism in the root. By supplying nitrate or ammonium, the accumulation of betanin increased by 1.5-3.8-fold in leaves and roots of the transgenic plants, confirming the pivotal role of nitrogen in betanin production. In addition, the rhizosphere microbial community is reshaped to reduce denitrification and increase respiration and oxidation, assistant to suppress nitrogen loss. Our analysis not only provides a framework for evaluating the pleiotropic effects of an engineered metabolic pathway on the host plant, but also facilitates the development of novel strategies to balance the heterologous process and the native metabolic network for the high-yield and nutrient-efficient production of bioactive compounds in plants.
在植物中构建特定的代谢途径是一种很有前景的方法,用于生产高价值的生物活性化合物,以应对气候变化和人口增长带来的挑战。了解异源途径与宿主植物天然代谢网络之间的相互作用,对于优化工程系统和最大化目标化合物的产量至关重要。在本研究中,我们对经过基因工程改造以生产甜菜红素(一种存在于石竹科植物中的生物碱色素)的烟草(Nicotiana tabacum)植株进行了转录组学、代谢组学和宏基因组学分析。我们的数据表明,甜菜红素的生物合成以剂量依赖的方式促进叶片中的碳水化合物代谢并抑制氮代谢,但增强根部的氮同化和代谢。通过供应硝酸盐或铵,转基因植物叶片和根部中甜菜红素的积累增加了1.5至3.8倍,证实了氮在甜菜红素生产中的关键作用。此外,根际微生物群落被重塑,以减少反硝化作用并增加呼吸作用和氧化作用,有助于抑制氮损失。我们的分析不仅为评估工程代谢途径对宿主植物的多效性影响提供了一个框架,还促进了开发新策略,以平衡异源过程和天然代谢网络,实现植物中生物活性化合物的高产和营养高效生产。