Jiang Lina, Gao Yifei, Han Leiqin, Zhang Wenxuan, Xu Xiaoyan, Chen Jia, Feng Shan, Fan Pengxiang
Department of Horticulture, Zijingang Campus, Zhejiang University, 310058 Hangzhou, China.
Mass Spectrometry & Metabolomics Core Facility, the Biomedical Research Core Facility, Westlake University, 310030 Hangzhou, China.
J Agric Food Chem. 2024 Oct 16;72(41):22722-22735. doi: 10.1021/acs.jafc.4c05719. Epub 2024 Oct 2.
The biosynthesis of amino acid derivatives of animal origin in plants represents a promising frontier in synthetic biology, offering a sustainable and eco-friendly approach to enhancing the nutritional value of plant-based diets. This study leverages the versatile capabilities of as a transient expression system to test a synthetic modular framework for the production of creatine, carnosine, and taurine-compounds typically absent in plants but essential for human health. By designing and stacking specialized synthetic modules, we successfully redirected the plant metabolic flux toward the synthesis of these amino acid derivatives of animal origin. Our results revealed the expression of a standalone creatine module resulted in the production of 2.3 μg/g fresh weight of creatine in leaves. Integrating two modules significantly carnosine yield increased by 3.8-fold and minimized the impact on plant amino acid metabolism compared to individual module application. Unexpectedly, introducing the taurine module caused a feedback-like inhibition of plant cysteine biosynthesis, revealing complex metabolic adjustments that can occur when introducing foreign pathways. Our findings underline the potential for employing plants as biofactories for the sustainable production of essential nutrients of animal origin.
植物中动物源氨基酸衍生物的生物合成是合成生物学中一个很有前景的前沿领域,为提高植物性饮食的营养价值提供了一种可持续且环保的方法。本研究利用[未提及具体物质]作为瞬时表达系统的多功能能力,来测试一种合成模块框架,用于生产植物中通常不存在但对人体健康至关重要的肌酸、肌肽和牛磺酸化合物。通过设计和堆叠专门的合成模块,我们成功地将植物代谢通量重定向到这些动物源氨基酸衍生物的合成上。我们的结果表明,单独的肌酸模块表达导致叶片中产生了2.3μg/g鲜重的肌酸。与单独应用单个模块相比,整合两个模块可使肌肽产量显著提高3.8倍,并将对植物氨基酸代谢的影响降至最低。出乎意料的是,引入牛磺酸模块导致植物半胱氨酸生物合成出现类似反馈的抑制,揭示了引入外源途径时可能发生的复杂代谢调整。我们的研究结果强调了利用植物作为生物工厂可持续生产动物源必需营养素的潜力。