人工智能在心血管临床试验中的应用。

Artificial Intelligence in Cardiovascular Clinical Trials.

机构信息

Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

The Ohio State University College of Medicine, Columbus, Ohio, USA.

出版信息

J Am Coll Cardiol. 2024 Nov 12;84(20):2051-2062. doi: 10.1016/j.jacc.2024.08.069.

Abstract

Randomized clinical trials are the gold standard for establishing the efficacy and safety of cardiovascular therapies. However, current pivotal trials are expensive, lengthy, and insufficiently diverse. Emerging artificial intelligence (AI) technologies can potentially automate and streamline clinical trial operations. This review describes opportunities to integrate AI throughout a trial's life cycle, including designing the trial, identifying eligible patients, obtaining informed consent, ascertaining physiological and clinical event outcomes, interpreting imaging, and analyzing or disseminating the results. Nevertheless, AI poses risks, including generating inaccurate results, amplifying biases against underrepresented groups, and violating patient privacy. Medical journals and regulators are developing new frameworks to evaluate AI research tools and the data they generate. Given the high-stakes role of randomized trials in medical decision making, AI must be integrated carefully and transparently to protect the validity of trial results.

摘要

随机临床试验是确定心血管治疗方法疗效和安全性的金标准。然而,目前的关键试验昂贵、冗长,且不够多样化。新兴人工智能 (AI) 技术有可能使临床试验操作实现自动化和流程化。本综述描述了在临床试验的整个生命周期中整合 AI 的机会,包括设计试验、确定合格患者、获得知情同意、确定生理和临床事件结果、解释成像以及分析或传播结果。然而,人工智能也存在风险,包括产生不准确的结果、放大对代表性不足的群体的偏见以及侵犯患者隐私。医学期刊和监管机构正在制定新的框架来评估 AI 研究工具及其生成的数据。鉴于随机试验在医疗决策中的高风险作用,必须谨慎透明地整合 AI,以保护试验结果的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索