Suppr超能文献

矿井通风系统智能故障诊断的单类分类模型

One-class classification model for intelligent fault diagnosis of mine ventilation systems.

作者信息

Luo Wen, Zhao Youxin

机构信息

China Energy Shendong Coal Group Co., Ltd, Yulin, 719315, Shanxi, China.

CCRI Tongan (Beijing) Intelligent Control Technology Co., Ltd, Beijing, 100013, China.

出版信息

Sci Rep. 2024 Nov 6;14(1):27009. doi: 10.1038/s41598-024-73527-0.

Abstract

To address the problem of fault branch recognition in mine ventilation systems, a one-class classification algorithm is introduced to construct the MC-OCSVM ventilation system fault diagnosis model, which is integrated with multiple OCSVMs. This model adopts uniform hyperparameters and transforms the ventilation system fault diagnosis problem into a maximum decision distance problem, to realize the effective use of mine monitoring wind speed data. The experiments on public KEEL datasets verify that the one-class classification integration model can solve the multiclassification problem and that the MC-OCSVM model has better generalizability than other one-class classification integration models do. The experiment is carried out in the Buertai coal mine, and the results show that the proposed algorithm can identify fault branches quickly and accurately, with an accuracy of 93.2% and a single fault diagnosis time is 1.2 s, highlighting its strong robustness.

摘要

为解决矿井通风系统中故障分支识别的问题,引入一类分类算法构建了与多个单类支持向量机(OCSVM)集成的MC-OCSVM通风系统故障诊断模型。该模型采用统一的超参数,将通风系统故障诊断问题转化为最大决策距离问题,以实现对矿井监测风速数据的有效利用。在公共KEEL数据集上的实验验证了一类分类集成模型能够解决多分类问题,且MC-OCSVM模型比其他一类分类集成模型具有更好的泛化能力。在布尔台煤矿进行的实验结果表明,所提算法能够快速、准确地识别故障分支,准确率为93.2%,单次故障诊断时间为1.2秒,突出了其强大的鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2007/11541920/53b031d9de45/41598_2024_73527_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验