基于临床病理特征的深度学习在乳腺癌前哨淋巴结宏转移中的鉴定。

Identification of sentinel lymph node macrometastasis in breast cancer by deep learning based on clinicopathological characteristics.

机构信息

Division of Computational Science for Health and Environment, Center for Environmental and Climate Science, Lund University, Lund, Sweden.

Department of Clinical Sciences Lund, Division of Surgery, Lund University, Lund, Sweden.

出版信息

Sci Rep. 2024 Nov 6;14(1):26970. doi: 10.1038/s41598-024-78040-y.

Abstract

The axillary lymph node status remains an important prognostic factor in breast cancer, and nodal staging using sentinel lymph node biopsy (SLNB) is routine. Randomized clinical trials provide evidence supporting de-escalation of axillary surgery and omission of SLNB in patients at low risk. However, identifying sentinel lymph node macrometastases (macro-SLNMs) is crucial for planning treatment tailored to the individual patient. This study is the first to explore the capacity of deep learning (DL) models to identify macro-SLNMs based on preoperative clinicopathological characteristics. We trained and validated five multivariable models using a population-based cohort of 18,185 patients. DL models outperform logistic regression, with Transformer showing the strongest results, under the constraint that the sensitivity is no less than 90%, reflecting the sensitivity of SLNB. This highlights the feasibility of noninvasive macro-SLNM prediction using DL. Feature importance analysis revealed that patients with similar characteristics exhibited different nodal status predictions, indicating the need for additional predictors for further improvement.

摘要

腋窝淋巴结状态仍然是乳腺癌的一个重要预后因素,前哨淋巴结活检(SLNB)的淋巴结分期是常规操作。随机临床试验提供了证据支持在低危患者中减少腋窝手术和省略 SLNB。然而,识别前哨淋巴结宏转移(macro-SLNMs)对于针对个体患者制定治疗计划至关重要。这项研究首次探索了深度学习(DL)模型基于术前临床病理特征识别 macro-SLNMs 的能力。我们使用基于人群的 18185 例患者队列训练和验证了五个多变量模型。在灵敏度不低于 90%的约束下,DL 模型优于逻辑回归,其中 Transformer 表现出最强的结果,反映了 SLNB 的灵敏度。这突出了使用 DL 进行非侵入性 macro-SLNM 预测的可行性。特征重要性分析表明,具有相似特征的患者表现出不同的淋巴结状态预测,这表明需要额外的预测因子以进一步提高预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/321e/11541545/cfa449495130/41598_2024_78040_Fig1_HTML.jpg

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索