Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
China School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
Commun Biol. 2024 Nov 7;7(1):1454. doi: 10.1038/s42003-024-07173-7.
CRISPR/Cas12a is a highly promising detection tool. However, detecting single nucleotide variations (SNVs) remains challenging. Here, we elucidate Cas12a specificity through crRNA engineering and profiling of single- and double-base mismatch tolerance across three targets. Our findings indicate that Cas12a specificity depends on the number, type, location, and distance of mismatches within the R-loop. We also find that introducing a wobble base pair at position 14 of the R-loop does not affect the free energy change when the spacer length is truncated to 17 bp. Therefore, we develop a new universal specificity enhancement strategy via iterative crRNA design, involving truncated spacers and a wobble base pair at position 14 of the R-loop, which tremendously increases specificity without sacrificing sensitivity. Additionally, we construct a PAM-free one-pot detection platform for SARS-CoV-2 variants, which effectively distinguishes SNV targets across various GC contents. In summary, our work reveals new insights into the specificity mechanism of Cas12a and demonstrates significant potential for in vitro diagnostics.
CRISPR/Cas12a 是一种极具前景的检测工具。然而,检测单核苷酸变异(SNVs)仍然具有挑战性。在这里,我们通过 crRNA 工程阐明了 Cas12a 的特异性,并对三个靶标中单碱基和双碱基错配的容忍度进行了分析。我们的研究结果表明,Cas12a 的特异性取决于 R 环内错配的数量、类型、位置和距离。我们还发现,当间隔区长度缩短至 17bp 时,在 R 环的第 14 位引入摆动碱基对不会影响自由能变化。因此,我们通过迭代 crRNA 设计开发了一种新的通用特异性增强策略,涉及截断的间隔区和 R 环第 14 位的摆动碱基对,这极大地提高了特异性而不牺牲敏感性。此外,我们构建了一种无 PAM 的 SARS-CoV-2 变体的一管式检测平台,可有效区分不同 GC 含量的 SNV 靶标。总之,我们的工作揭示了 Cas12a 特异性机制的新见解,并展示了在体外诊断方面的巨大潜力。