Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany.
Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekis ave. 7, Vilnius, 10257, Lithuania.
Nat Commun. 2022 Dec 3;13(1):7460. doi: 10.1038/s41467-022-35116-5.
CRISPR-Cas effector complexes recognise nucleic acid targets by base pairing with their crRNA which enables easy re-programming of the target specificity in rapidly emerging genome engineering applications. However, undesired recognition of off-targets, that are only partially complementary to the crRNA, occurs frequently and represents a severe limitation of the technique. Off-targeting lacks comprehensive quantitative understanding and prediction. Here, we present a detailed analysis of the target recognition dynamics by the Cascade surveillance complex on a set of mismatched DNA targets using single-molecule supercoiling experiments. We demonstrate that the observed dynamics can be quantitatively modelled as a random walk over the length of the crRNA-DNA hybrid using a minimal set of parameters. The model accurately describes the recognition of targets with single and double mutations providing an important basis for quantitative off-target predictions. Importantly the model intrinsically accounts for observed bias regarding the position and the proximity between mutations and reveals that the seed length for the initiation of target recognition is controlled by DNA supercoiling rather than the Cascade structure.
CRISPR-Cas 效应物复合物通过与 crRNA 的碱基配对来识别核酸靶标,这使得在快速发展的基因组工程应用中很容易重新编程目标特异性。然而,与 crRNA 只有部分互补的脱靶核酸的非预期识别经常发生,这是该技术的一个严重限制。脱靶缺乏全面的定量理解和预测。在这里,我们使用单分子超螺旋实验对一组错配 DNA 靶标上的 Cascade 监测复合物的靶标识别动力学进行了详细分析。我们证明,使用一组最小参数,可以将观察到的动力学定量建模为在 crRNA-DNA 杂交体的长度上的随机漫步。该模型准确地描述了具有单突变和双突变的靶标的识别,为定量脱靶预测提供了重要基础。重要的是,该模型内在地解释了观察到的关于突变的位置和接近性的偏差,并表明目标识别的起始种子长度由 DNA 超螺旋控制,而不是由 Cascade 结构控制。