Suppr超能文献

基于边缘计算的医疗决策系统集成学习模型。

Edge computing-based ensemble learning model for health care decision systems.

机构信息

Department of Computer Science and Engineering, PSN College of Engineering and Technology, Tirunelveli, Tamil Nadu, 627451, India.

出版信息

Sci Rep. 2024 Nov 6;14(1):26997. doi: 10.1038/s41598-024-78225-5.

Abstract

A growing number of humans have suffered severe chronic illnesses, which has caused a boost in the requirement for diagnostic and medical treatment procedures that are both accurate and fast. Improved patient conditions and enhanced Decision-Making Systems (DMS) for healthcare professionals are the primary objectives of the Clinical Decision Support System (CDSS) recommended in this research article. The main drawback of traditional Machine Learning (ML) techniques is their failure to predict reliably. To solve this problem, the proposed model creates an Ensemble Extreme Learning Machine (EN-ELM) algorithm that combines predictors trained on several different data sets. This lowers the chance of overfitting. The suggested CDSS uses many different data processing methods, including Adaptive Synthetic (ADASYN) and isolation Forest (iForest), which fix problems like outliers and class imbalance. This approach significantly enhances the framework's classification performance. Also, the CDSS is compatible with an EC model, which enables real-time computation while minimizing the requirement for integrated systems. The recommended CDSS applies iForest and ADASYN to execute large-scale trials validating high standards of accuracy across numerous datasets. Researchers concluded that a suitable ELM classification threshold of 85% is the most effective, which substantially boosts the accuracy of the predictive model. When applied to various medical datasets, such as Hepatocellular Carcinoma (HCC), Cervical Cancer, Chronic Kidney Disease (CKD), Heart Disease, and Arrhythmia, the EN-ELM achieved accuracy rates of 99.36%, 98.15%, 97.85%, 97.06%, and 96.72%, respectively. By measuring this progress, the CDSS could dramatically improve the accuracy of chronic illness diagnosis and treatment, which similarly affects clinicians.

摘要

越来越多的人患有严重的慢性疾病,这导致了对准确快速的诊断和治疗程序的需求增加。本研究文章中推荐的临床决策支持系统(CDSS)的主要目标是改善患者状况和增强医疗保健专业人员的决策支持系统(DMS)。传统机器学习(ML)技术的主要缺点是其无法可靠地预测。为了解决这个问题,所提出的模型创建了一个集成极端学习机(EN-ELM)算法,该算法结合了在多个不同数据集上训练的预测器。这降低了过拟合的可能性。所提出的 CDSS 使用了许多不同的数据处理方法,包括自适应合成(ADASYN)和隔离森林(iForest),这些方法解决了异常值和类不平衡等问题。这大大提高了框架的分类性能。此外,CDSS 与 EC 模型兼容,这使得实时计算成为可能,同时最小化了对集成系统的需求。所建议的 CDSS 应用 iForest 和 ADASYN 来执行大规模试验,以验证在多个数据集上的高精度。研究人员得出结论,合适的 ELM 分类阈值为 85%是最有效的,这大大提高了预测模型的准确性。当应用于各种医疗数据集,如肝细胞癌(HCC)、宫颈癌、慢性肾脏病(CKD)、心脏病和心律失常时,EN-ELM 的准确率分别达到 99.36%、98.15%、97.85%、97.06%和 96.72%。通过衡量这一进展,CDSS 可以极大地提高慢性疾病诊断和治疗的准确性,这同样会影响临床医生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58f2/11541999/c31dc1a73c19/41598_2024_78225_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验