Seth Prannoy, Friedrichs Jens, Limasale Yanuar Dwi Putra, Fertala Nicole, Freudenberg Uwe, Zhang Yixin, Lampel Ayala, Werner Carsten
Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, 01069, Dresden, Germany.
Cluster of Excellence Physics of Life, and B CUBE - Center for Molecular Bioengineering, Dresden University of Technology, 01307, Dresden, Germany.
Adv Healthc Mater. 2025 Apr;14(9):e2402656. doi: 10.1002/adhm.202402656. Epub 2024 Nov 6.
The dynamic nature of cellular microenvironments, regulated by the viscoelasticity and enzymatic cleavage of the extracellular matrix, remains challenging to emulate in engineered synthetic biomaterials. To address this, a novel platform of cell-instructive hydrogels is introduced, composed of two concurrently forming interpenetrating polymer networks (IPNs). These IPNs consist of the same basic building blocks - four-armed poly(ethylene glycol) and the sulfated glycosaminoglycan (sGAG) heparin - are cross-linked through either chemical or physical interactions, allowing for precise and selective tuning of the hydrogel's stiffness, viscoelasticity, and proteolytic cleavability. The studies of the individual and combined effects of these parameters on stem cell behavior revealed that human mesenchymal stem cells exhibited increased spreading and Yes-associated protein transcriptional activity in more viscoelastic and cleavable sGAG-IPN hydrogels. Furthermore, human induced pluripotent stem cell (iPSC) cysts displayed enhanced lumen formation, growth, and pluripotency maintenance when cultured in sGAG-IPN hydrogels with higher viscoelasticity. Inhibition studies emphasized the pivotal roles of actin dynamics and matrix metalloproteinase activity in iPSC cyst morphology, which varied with the viscoelastic properties of the hydrogels. Thus, the introduced sGAG-IPN hydrogel platform offers a powerful methodology for exogenous stem cell fate control.
细胞微环境的动态特性受细胞外基质的粘弹性和酶解作用调控,在工程合成生物材料中模拟这一特性仍具有挑战性。为解决这一问题,引入了一种新型的具有细胞指导作用的水凝胶平台,它由两个同时形成的互穿聚合物网络(IPN)组成。这些IPN由相同的基本构建单元——四臂聚乙二醇和硫酸化糖胺聚糖(sGAG)肝素——通过化学或物理相互作用交联而成,从而能够精确且选择性地调节水凝胶的硬度、粘弹性和蛋白水解可切割性。对这些参数对干细胞行为的单独和综合影响的研究表明,在更具粘弹性和可切割性的sGAG-IPN水凝胶中,人间充质干细胞表现出更大的铺展和Yes相关蛋白转录活性。此外,当在具有更高粘弹性的sGAG-IPN水凝胶中培养时,人诱导多能干细胞(iPSC)囊肿显示出增强的管腔形成、生长和多能性维持。抑制研究强调了肌动蛋白动力学和基质金属蛋白酶活性在iPSC囊肿形态中的关键作用,其随水凝胶的粘弹性特性而变化。因此,引入的sGAG-IPN水凝胶平台为外源性干细胞命运控制提供了一种强大的方法。