Suppr超能文献

RLCFormer:基于Transformer的自动路边激光雷达-相机校准框架

RLCFormer: Automatic roadside LiDAR-Camera calibration framework with transformer.

作者信息

Tian Rui, Bao Xuefeng, Chen Yunli, Liu Feng, Zhen Yiqiang, Li Yong

机构信息

Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China.

School of Software Engineering, Beijing Jiaotong University, Beijing, 100044, China.

出版信息

Heliyon. 2024 Sep 26;10(20):e38506. doi: 10.1016/j.heliyon.2024.e38506. eCollection 2024 Oct 30.

Abstract

LiDAR-Camera fusion is pivotal for perceiving and understanding complex traffic environments, particularly valuable in autonomous driving and traffic monitoring. Traditional calibration algorithms, primarily designed for onboard sensors, are inadequate for roadside setups where sensors are positioned higher and more dispersed. To address this challenge, we introduce the RLCFormer, a Transformer-based network specifically tailored for precise calibration of roadside sensors. This method innovatively integrates depth and RGB features, utilizing correlation layers and a Transformer decoder to accurately match features across modalities. Evaluated on the DAIR-V2X-I Roadside 3D detection dataset, the RLCFormer achieves an average translation error of 3.3187 cm and a rotation error of 0.0469°, surpassing existing methods. Our approach significantly enhances scene representation and calibration precision, offering a robust solution for roadside sensor calibration and advancing the state of the art in sensor fusion technology.

摘要

激光雷达与摄像头融合对于感知和理解复杂交通环境至关重要,在自动驾驶和交通监测中具有特别重要的价值。传统的校准算法主要是为车载传感器设计的,对于路边传感器设置(传感器位置更高且分布更分散)来说并不适用。为应对这一挑战,我们引入了RLCFormer,这是一种基于Transformer的网络,专门用于路边传感器的精确校准。该方法创新性地整合了深度和RGB特征,利用相关层和Transformer解码器跨模态精确匹配特征。在DAIR-V2X-I路边3D检测数据集上进行评估时,RLCFormer实现了平均平移误差3.3187厘米和旋转误差0.0469°,超过了现有方法。我们的方法显著增强了场景表示和校准精度,为路边传感器校准提供了强大的解决方案,并推动了传感器融合技术的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验