Zhou Yingtong, Han Tiansi, Nie Qiong, Zhu Yuxuan, Li Minghu, Bian Ning, Li Zhiheng
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
Meituan, Lizedong Road, Chaoyang District, Beijing 100102, China.
Sensors (Basel). 2024 Feb 8;24(4):1127. doi: 10.3390/s24041127.
Accurate calibration between LiDAR and camera sensors is crucial for autonomous driving systems to perceive and understand the environment effectively. Typically, LiDAR-camera extrinsic calibration requires feature alignment and overlapping fields of view. Aligning features from different modalities can be challenging due to noise influence. Therefore, this paper proposes a targetless extrinsic calibration method for monocular cameras and LiDAR sensors that have a non-overlapping field of view. The proposed solution uses pose transformation to establish data association across different modalities. This conversion turns the calibration problem into an optimization problem within a visual SLAM system without requiring overlapping views. To improve performance, line features serve as constraints in visual SLAM. Accurate positions of line segments are obtained by utilizing an extended photometric error optimization method. Moreover, a strategy is proposed for selecting appropriate calibration methods from among several alternative optimization schemes. This adaptive calibration method selection strategy ensures robust calibration performance in urban autonomous driving scenarios with varying lighting and environmental textures while avoiding failures and excessive bias that may result from relying on a single approach.
激光雷达与相机传感器之间的精确校准对于自动驾驶系统有效感知和理解环境至关重要。通常,激光雷达与相机的外部校准需要特征对齐和重叠视场。由于噪声影响,对齐来自不同模态的特征可能具有挑战性。因此,本文提出了一种针对具有非重叠视场的单目相机和激光雷达传感器的无目标外部校准方法。所提出的解决方案使用位姿变换来建立跨不同模态的数据关联。这种转换将校准问题转化为视觉同步定位与地图构建(SLAM)系统中的一个优化问题,而无需重叠视图。为了提高性能,线特征在视觉SLAM中用作约束。通过使用扩展的光度误差优化方法获得线段的精确位置。此外,还提出了一种从几种替代优化方案中选择合适校准方法的策略。这种自适应校准方法选择策略可确保在具有不同光照和环境纹理的城市自动驾驶场景中实现稳健的校准性能,同时避免因依赖单一方法而可能导致的失败和过度偏差。