Suppr超能文献

自适应点线融合:一种用于自动驾驶的具有方案选择的无目标激光雷达-相机校准方法

Adaptive Point-Line Fusion: A Targetless LiDAR-Camera Calibration Method with Scheme Selection for Autonomous Driving.

作者信息

Zhou Yingtong, Han Tiansi, Nie Qiong, Zhu Yuxuan, Li Minghu, Bian Ning, Li Zhiheng

机构信息

Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

Meituan, Lizedong Road, Chaoyang District, Beijing 100102, China.

出版信息

Sensors (Basel). 2024 Feb 8;24(4):1127. doi: 10.3390/s24041127.

Abstract

Accurate calibration between LiDAR and camera sensors is crucial for autonomous driving systems to perceive and understand the environment effectively. Typically, LiDAR-camera extrinsic calibration requires feature alignment and overlapping fields of view. Aligning features from different modalities can be challenging due to noise influence. Therefore, this paper proposes a targetless extrinsic calibration method for monocular cameras and LiDAR sensors that have a non-overlapping field of view. The proposed solution uses pose transformation to establish data association across different modalities. This conversion turns the calibration problem into an optimization problem within a visual SLAM system without requiring overlapping views. To improve performance, line features serve as constraints in visual SLAM. Accurate positions of line segments are obtained by utilizing an extended photometric error optimization method. Moreover, a strategy is proposed for selecting appropriate calibration methods from among several alternative optimization schemes. This adaptive calibration method selection strategy ensures robust calibration performance in urban autonomous driving scenarios with varying lighting and environmental textures while avoiding failures and excessive bias that may result from relying on a single approach.

摘要

激光雷达与相机传感器之间的精确校准对于自动驾驶系统有效感知和理解环境至关重要。通常,激光雷达与相机的外部校准需要特征对齐和重叠视场。由于噪声影响,对齐来自不同模态的特征可能具有挑战性。因此,本文提出了一种针对具有非重叠视场的单目相机和激光雷达传感器的无目标外部校准方法。所提出的解决方案使用位姿变换来建立跨不同模态的数据关联。这种转换将校准问题转化为视觉同步定位与地图构建(SLAM)系统中的一个优化问题,而无需重叠视图。为了提高性能,线特征在视觉SLAM中用作约束。通过使用扩展的光度误差优化方法获得线段的精确位置。此外,还提出了一种从几种替代优化方案中选择合适校准方法的策略。这种自适应校准方法选择策略可确保在具有不同光照和环境纹理的城市自动驾驶场景中实现稳健的校准性能,同时避免因依赖单一方法而可能导致的失败和过度偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e433/10891561/099846cae4ea/sensors-24-01127-g001.jpg

相似文献

2
Automatic Extrinsic Calibration of 3D LIDAR and Multi-Cameras Based on Graph Optimization.
Sensors (Basel). 2022 Mar 13;22(6):2221. doi: 10.3390/s22062221.
3
Multi-Level Optimization for Data-Driven Camera-LiDAR Calibration in Data Collection Vehicles.
Sensors (Basel). 2023 Nov 1;23(21):8889. doi: 10.3390/s23218889.
4
A Review of Deep Learning-Based LiDAR and Camera Extrinsic Calibration.
Sensors (Basel). 2024 Jun 15;24(12):3878. doi: 10.3390/s24123878.
5
CFNet: LiDAR-Camera Registration Using Calibration Flow Network.
Sensors (Basel). 2021 Dec 4;21(23):8112. doi: 10.3390/s21238112.
6
Indirect Correspondence-Based Robust Extrinsic Calibration of LiDAR and Camera.
Sensors (Basel). 2016 Jun 22;16(6):933. doi: 10.3390/s16060933.
7
Accurate Calibration of Multi-LiDAR-Multi-Camera Systems.
Sensors (Basel). 2018 Jul 3;18(7):2139. doi: 10.3390/s18072139.
9
Geometric calibration for LiDAR-camera system fusing 3D-2D and 3D-3D point correspondences.
Opt Express. 2020 Jan 20;28(2):2122-2141. doi: 10.1364/OE.381176.
10
Extrinsic Calibration of Camera and 2D Laser Sensors without Overlap.
Sensors (Basel). 2017 Oct 14;17(10):2346. doi: 10.3390/s17102346.

引用本文的文献

1
Neural Approach to Coordinate Transformation for LiDAR-Camera Data Fusion in Coastal Observation.
Sensors (Basel). 2024 Oct 21;24(20):6766. doi: 10.3390/s24206766.

本文引用的文献

1
Research on an Adaptive Method for the Angle Calibration of Roadside LiDAR Point Clouds.
Sensors (Basel). 2023 Aug 30;23(17):7542. doi: 10.3390/s23177542.
2
Deep Hough Transform for Semantic Line Detection.
IEEE Trans Pattern Anal Mach Intell. 2022 Sep;44(9):4793-4806. doi: 10.1109/TPAMI.2021.3077129. Epub 2022 Aug 4.
3
Extrinsic Calibration of Camera and 2D Laser Sensors without Overlap.
Sensors (Basel). 2017 Oct 14;17(10):2346. doi: 10.3390/s17102346.
4
A Novel Linelet-Based Representation for Line Segment Detection.
IEEE Trans Pattern Anal Mach Intell. 2018 May;40(5):1195-1208. doi: 10.1109/TPAMI.2017.2703841. Epub 2017 May 11.
5
LSD: a fast line segment detector with a false detection control.
IEEE Trans Pattern Anal Mach Intell. 2010 Apr;32(4):722-32. doi: 10.1109/TPAMI.2008.300.
6
SIFT: Predicting amino acid changes that affect protein function.
Nucleic Acids Res. 2003 Jul 1;31(13):3812-4. doi: 10.1093/nar/gkg509.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验