Roustaei Narges
Ophthalmology Department, IVORC Academic Foundation, Texas, USA.
Med Hypothesis Discov Innov Ophthalmol. 2024 Oct 14;13(3):151-159. doi: 10.51329/mehdiophthal1506. eCollection 2024 Fall.
Linear-regression analysis is a well-known statistical technique that serves as a basis for understanding the relationships between variables. Its simplicity and interpretability render it the preferred choice in healthcare research, including vision science, as it enables researchers and practitioners to model and predict outcomes effectively. This article presents the fundamentals of linear-regression modeling and reviews the applications and interpretations of the main linear-regression analysis.
The primary objective of linear regression is to fit a linear equation to observed data, thus allowing one to predict and interpret the effects of predictor variables. A simple linear regression involves a single independent variable, whereas multiple linear regression includes multiple predictors. A linear-regression model is used to identify the general underlying pattern connecting independent and dependent variables, prove the relationship between these variables, and predict the dependent variables for a specified value of the independent variables. This review demonstrates the appropriate interpretation of linear-regression results using examples from publications in the field of vision science.
Simple and multiple linear regressions are performed, with emphasis on the correct interpretation of standardized and unstandardized regression coefficients, the coefficient of determination, the method for variable selection, assumptions in linear regression, dummy variables, and sample size, along with common mistakes in reporting linear-regression analysis. Finally, a checklist is presented to the editors and peer reviewers for a systematic assessment of submissions that used linear-regression models.
Medical practitioners and researchers should acquire basic knowledge of linear-regression such that they can contribute meaningfully to the development of technology by accurately interpreting research outcomes. Incorrect use or interpretation of appropriate linear-regression models may result in inaccurate results. Appointing an expert statistician in an interdisciplinary research team may offer added value to the study design by preventing overstated results.
线性回归分析是一种著名的统计技术,是理解变量之间关系的基础。其简单性和可解释性使其成为医疗保健研究(包括视觉科学)中的首选方法,因为它能让研究人员和从业者有效地对结果进行建模和预测。本文介绍线性回归建模的基本原理,并回顾主要线性回归分析的应用和解释。
线性回归的主要目标是将线性方程拟合到观测数据,从而使人们能够预测和解释预测变量的影响。简单线性回归涉及单个自变量,而多元线性回归包括多个预测变量。线性回归模型用于识别连接自变量和因变量的一般潜在模式,证明这些变量之间的关系,并预测自变量特定值下的因变量。本综述通过视觉科学领域出版物中的实例展示了线性回归结果的正确解释。
进行了简单和多元线性回归,重点在于对标准化和非标准化回归系数、决定系数、变量选择方法、线性回归中的假设、虚拟变量和样本量的正确解释,以及报告线性回归分析时的常见错误。最后,为编辑和同行评审人员提供了一份清单,以便对使用线性回归模型的投稿进行系统评估。
医学从业者和研究人员应掌握线性回归的基本知识,以便通过准确解释研究结果为技术发展做出有意义的贡献。对适当的线性回归模型使用或解释不当可能导致结果不准确。在跨学科研究团队中任命一位专业统计学家可能会通过防止结果夸大而给研究设计带来附加价值。