Fakhari Sepideh, Campolina-Silva Gabriel, Asayesh Farnaz, Girardet Laura, Scott-Boyer Marie-Pier, Droit Arnaud, Soulet Denis, Greener Jesse, Belleannée Clémence
Department of Obstetrics, Gynecology, and Reproduction, Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculty of Medicine, Québec City, Quebec, Canada.
Centre de recherche du centre hospitalier universitaire de Québec - Université Laval, Québec City, Quebec, Canada.
J Cell Physiol. 2025 Jan;240(1):e31475. doi: 10.1002/jcp.31475. Epub 2024 Nov 7.
Shear stress, resulting from fluid flow, is a fundamental mechanical stimulus affecting various cellular functions. The epididymis, essential for sperm maturation, offers a compelling model to study the effects of shear stress on cellular behavior. This organ undergoes extensive proliferation and differentiation until puberty, achieving full functionality as spermatozoa commence their post-testicular maturation. Although the mechanical tension exerted by testicular fluid is hypothesized to drive epithelial proliferation and differentiation, the precise mechanisms remain unclear. Here we assessed whether the responsiveness of the epididymal cells to shear stress depends on functional primary cilia by combining microfluidic strategies on immortalized epididymal cells, calcium signaling assays, and high-throughput gene expression analysis. We identified 97 genes overexpressed in response to shear stress, including early growth response (Egr) 2/3, cellular communication network factor (Ccn) 1/2, and Fos proto-oncogene (Fos). While shear stress triggered a rapid increase of intracellular Ca, this response was abrogated following the impairment of primary ciliogenesis through pharmacological and siRNA approaches. Overall, our findings provide valuable insights into how mechanical forces influence the development of the male reproductive system, a requisite to sperm maturation.
由流体流动产生的剪切应力是影响各种细胞功能的一种基本力学刺激。附睾对于精子成熟至关重要,为研究剪切应力对细胞行为的影响提供了一个引人注目的模型。该器官在青春期前经历广泛的增殖和分化,随着精子开始其睾丸后成熟而实现完全功能。尽管推测睾丸液施加的机械张力驱动上皮细胞增殖和分化,但其确切机制仍不清楚。在这里,我们通过将微流体策略应用于永生化附睾细胞、钙信号测定和高通量基因表达分析,评估了附睾细胞对剪切应力的反应性是否依赖于功能性初级纤毛。我们鉴定出97个因剪切应力而上调表达的基因,包括早期生长反应(Egr)2/3、细胞通讯网络因子(Ccn)1/2和原癌基因Fos。虽然剪切应力引发细胞内钙的快速增加,但通过药理学和小干扰RNA方法破坏初级纤毛发生后,这种反应被消除。总体而言,我们的研究结果为机械力如何影响雄性生殖系统的发育提供了有价值的见解,而雄性生殖系统的发育是精子成熟的必要条件。