Villikudathil Angelina Thomas, Mc Guigan Declan H, English Andrew
Centre for Stratified Medicine, Faculty of Life and Health Sciences, Ulster University, Magee Campus, Londonderry, Northern Ireland, UK.
School of Health and Life Sciences, Teesside university, England, UK.
Acta Diabetol. 2025 May;62(5):621-631. doi: 10.1007/s00592-024-02383-1. Epub 2024 Nov 7.
Type-2 Diabetes Mellitus (T2DM) affects millions globally, with escalating rates. It often leads to undiagnosed complications and commonly coexists with other health conditions. This study investigates two types of prevalent comorbidities related to T2DM-the circulatory system (DCM1) and digestive system diseases (DCM2)-using clinical, genomic and proteomic datasets. The aim is to identify new biomarkers by applying existing machine learning (ML) based techniques for early detection, prognosis and diagnosis of these comorbidities.
Here, we report a cross-sectional retrospective analysis from a T2DM dataset of T2DM associated concordant comorbidities (diseases with shared pathophysiology and management) from the Diastrat cohort (a T2DM cohort) recruited at the Northern Ireland Centre for Stratified Medicine (NICSM), in Northern Ireland.
In the clinical data analysis, we identified that lipidemia was shown to negatively correlate with depression in the DCM1 group while positively correlate with depression in the DCM2 group. In genomic analysis, we identified statistically significant variants rs9844730 in procollagen-lysine (PLOD2), rs73590361 in beta-1,4-N-acetyl- galactosaminyl-transferase (B4GALNT3) and rs964680 in A kinase (PRKA) anchor protein 14 (AKAP14) which appear to differentiate DCM1 and DCM2 groups. In proteomic analysis, we identified 4 statistically significant proteins: natriuretic peptides B (BNP), pro-adrenomedullin (ADM), natriuretic peptides B (NT-proBNP) and discoidin (DCBLD2) that can differentiate DCM1 and DCM2 groups and have built robust ML model using clinical, genomic, and proteomic markers (0.83 receiver operative characteristics curve area, 84% positive predictive value and 83% negative predictive value and a classification accuracy of 83%) for prediction of DCM1 and DCM2 groups.
Our study successfully identifies novel clinical, genomic, and proteomic biomarkers that differentiate between circulatory and digestive system comorbidities in Type-2 Diabetes Mellitus patients. The machine learning model we developed demonstrates strong predictive capabilities, providing a promising tool for the early detection, prognosis, and diagnosis of these T2DM-associated comorbidities. These findings have the potential to enhance personalized management strategies for patients with T2DM, ultimately improving clinical outcomes. Further research is needed to validate these biomarkers and integrate them into clinical practice.
2型糖尿病(T2DM)在全球影响着数百万人,且发病率不断上升。它常常导致并发症未被诊断出来,并且通常与其他健康状况并存。本研究使用临床、基因组和蛋白质组数据集,调查与T2DM相关的两种常见合并症——循环系统疾病(DCM1)和消化系统疾病(DCM2)。目的是通过应用现有的基于机器学习(ML)的技术来识别新的生物标志物,用于这些合并症的早期检测、预后评估和诊断。
在此,我们报告了一项横断面回顾性分析,该分析来自于北爱尔兰分层医学中心(NICSM)招募的Diastrat队列(一个T2DM队列)的T2DM数据集,该数据集包含T2DM相关的一致性合并症(具有共同病理生理学和管理方式的疾病)。
在临床数据分析中,我们发现血脂异常在DCM1组中与抑郁症呈负相关,而在DCM2组中与抑郁症呈正相关。在基因组分析中,我们在原胶原赖氨酸(PLOD2)中鉴定出具有统计学意义的变异体rs9844730,在β-1,4-N-乙酰半乳糖胺基转移酶(B4GALNT3)中鉴定出rs73590361,以及在A激酶(PRKA)锚定蛋白14(AKAP14)中鉴定出rs964680,这些变异体似乎可以区分DCM1和DCM2组。在蛋白质组分析中,我们鉴定出4种具有统计学意义的蛋白质:脑钠肽B(BNP)、前肾上腺髓质素(ADM)、N末端脑钠肽原(NT-proBNP)和盘状结构域蛋白(DCBLD2),它们可以区分DCM1和DCM2组,并使用临床、基因组和蛋白质组标记物建立了强大的ML模型(受试者操作特征曲线面积为0.83,阳性预测值为84%,阴性预测值为83%,分类准确率为83%)来预测DCM1和DCM2组。
我们的研究成功识别出了新的临床、基因组和蛋白质组生物标志物,这些标志物可以区分2型糖尿病患者的循环系统和消化系统合并症。我们开发的机器学习模型展示出了强大的预测能力,为这些与T2DM相关的合并症的早期检测、预后评估和诊断提供了一个有前景的工具。这些发现有可能加强2型糖尿病患者的个性化管理策略,最终改善临床结局。需要进一步的研究来验证这些生物标志物并将它们整合到临床实践中。