Department of Physics and SSN Research Centre, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
St.Teresa Arts and Science College for Women, Mangalakuntu, TamilNadu, 629178, India.
Environ Geochem Health. 2024 Nov 7;46(12):498. doi: 10.1007/s10653-024-02270-2.
A tremendous amount of recent work has been done on different metal oxide nanomaterials for biological activities and photocatalytic dye degradation. This work used the Cissus quadrangularis leaf extract to prepare TiO, CdO, MnO, and ZnO nanoparticles using a green synthesis approach. To ascertain the physicochemical characteristics of the generated metal oxide nanoparticles, various characterisation techniques were used. The X-ray diffraction technique was used to determine the composition of the crystal and phase. Metal oxide nanoparticles have been proven to be present through surface morphological investigations using a scanning electron microscope and energy dispersive spectroscopy analysis. UV-Vis and Fourier transform infrared spectra were used for spectroscopic analysis. X-ray photoelectron spectroscopy can determine a material's elemental composition in addition to the electronic and chemical states of its atoms. The nanomaterial's distinct morphology, which resembles rods, rose petals, platelets, and spheres, was discovered by scanning electron microscope. Synthesized metal oxide nanoparticles have demonstrated a remarkable efficiency of 87.5-90.6% when utilized as a catalyst towards the removal of the malachite green dye under UV light irradiation. Additionally, we use the disc diffusion method to assess antibiotic efficacy against Bacillus subtilis, Candida tropicalis, and Escherichia coli. ZnO nanoparticles had the greatest zones of inhibition for 80 μL doses, measuring 26.99 mm for Bacillus subtilis, 27.57 mm for Escherichia coli, and 25.28 mm for Candida tropicalis. The antimicrobial activity was strongly impacted by the size of the nanoparticles and increased with decreasing particle size. Overall, our research demonstrates that metal oxide nanoparticles are a promising photocatalytic agent for wastewater treatment and biological applications.
大量最近的工作已经在不同的金属氧化物纳米材料的生物活性和光催化染料降解方面进行。这项工作使用了菝葜叶提取物,通过绿色合成方法制备 TiO 、CdO 、MnO 和 ZnO 纳米粒子。为了确定所生成的金属氧化物纳米粒子的物理化学特性,使用了各种特征化技术。X 射线衍射技术用于确定晶体和相的组成。通过扫描电子显微镜和能量色散光谱分析,证明了金属氧化物纳米粒子的存在。使用紫外-可见和傅里叶变换红外光谱进行光谱分析。X 射线光电子能谱可以确定材料的元素组成,以及原子的电子和化学状态。通过扫描电子显微镜发现,纳米材料的独特形态类似于棒状、玫瑰花瓣状、片状和球状。合成的金属氧化物纳米粒子在作为催化剂用于去除孔雀石绿染料方面表现出了显著的效率,在紫外光照射下达到了 87.5-90.6%。此外,我们使用圆盘扩散法评估抗生素对枯草芽孢杆菌、热带假丝酵母和大肠杆菌的功效。对于 80 μL 剂量的 ZnO 纳米粒子,其抑制区最大,对枯草芽孢杆菌的抑制区为 26.99mm,对大肠杆菌的抑制区为 27.57mm,对热带假丝酵母的抑制区为 25.28mm。纳米粒子的尺寸对其抗菌活性有很大的影响,随着粒子尺寸的减小,抗菌活性增强。总的来说,我们的研究表明,金属氧化物纳米粒子是一种很有前途的光催化废水处理和生物应用的催化剂。