Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
PLoS One. 2024 Nov 7;19(11):e0313330. doi: 10.1371/journal.pone.0313330. eCollection 2024.
Protein glycosylation is a fundamental modification crucial for numerous intra- and extracellular functions in all eukaryotes. The phosphorylated dolichol (Dol-P) is utilized in N-linked protein glycosylation and other glycosylation pathways. Dolichol kinase (DK) plays a key role in catalyzing the phosphorylation of dolichol. The glycosylation patterns in the Kluyveromyces lactis DK mutant revealed that the yeast well tolerated a minor deficiency in Dol-P by adjusting protein glycosylation. Comparative analysis of sequences of DK homologs from different species of eukaryotes, archaea and bacteria and AlphaFold3 structural model studies, allowed us to predict that DK is most likely composed of two structural/functional domains. The activity of predicted K. lactis DK C-terminal domain expressed from the single copy in the chromosome was not sufficient to keep protein glycosylation level necessary for survival of K. lactis. However, the glycosylation level was partially restored by additionally provided and overexpressed N- or C-terminal domain. Moreover, co-expression of the individual N-and C-terminal domains restored the glycosylation of vacuolar carboxypeptidase Y in both K. lactis and Saccharomyces cerevisiae. Despite the differences in length and non-homologous sequences of the N-terminal domains the human and nematode Caenorhabditis elegans DKs successfully complemented DK functions in both yeast species. Additionally, the N-terminal domains of K. lactis and C. elegans DK could functionally substitute for one another, creating active chimeric enzymes. Our results suggest that while the C-terminal domain remains crucial for DK activity, the N-terminal domain may serve not only as a structural domain but also as a possible regulator of DK activity.
蛋白质糖基化是一种基本的修饰,对于所有真核生物的许多细胞内和细胞外功能都至关重要。磷酸化的多萜醇(Dol-P)用于 N 连接蛋白糖基化和其他糖基化途径。多萜醇激酶(DK)在催化多萜醇磷酸化中起着关键作用。在 Kluyveromyces lactis DK 突变体中的糖基化模式表明,酵母通过调整蛋白质糖基化可以很好地耐受 Dol-P 的轻微缺乏。对来自不同真核生物、古菌和细菌的 DK 同源物序列的比较分析和 AlphaFold3 结构模型研究,使我们能够预测 DK 很可能由两个结构/功能域组成。从染色体上的单个拷贝表达的预测 K. lactis DK C 末端结构域的活性不足以维持 K. lactis 生存所需的蛋白质糖基化水平。然而,通过额外提供和过表达 N 或 C 末端结构域,糖基化水平部分得到了恢复。此外,单个 N 和 C 末端结构域的共表达恢复了 K. lactis 和 Saccharomyces cerevisiae 中液泡羧肽酶 Y 的糖基化。尽管 N 末端结构域的长度和非同源序列存在差异,但人类和线虫 Caenorhabditis elegans 的 DK 成功地在两种酵母物种中补充了 DK 功能。此外,K. lactis 和 C. elegans 的 N 末端结构域可以在功能上相互替代,形成活性嵌合酶。我们的结果表明,虽然 C 末端结构域对 DK 活性仍然至关重要,但 N 末端结构域不仅可以作为结构域,还可以作为 DK 活性的可能调节剂。