Suppr超能文献

基于分析物调控制备金纳米种子的生长和机器学习增强光谱分析的微流控光学适体传感器:真菌毒素的快速检测。

Microfluidic Optical Aptasensor for Small Molecules Based on Analyte-Tuned Growth of Gold Nanoseeds and Machine Learning-Enhanced Spectrum Analysis: Rapid Detection of Mycotoxins.

机构信息

Department of Food Science and Agricultural Chemistry, McGill University Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.

Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.

出版信息

ACS Sens. 2024 Nov 22;9(11):6299-6308. doi: 10.1021/acssensors.4c02739. Epub 2024 Nov 7.

Abstract

Natural toxins, mainly small molecules, are a category of chemical hazards in agri-food systems that pose threats to both public health and food security. Current standard methods for monitoring these toxins, predominantly based on liquid chromatography-mass spectrometry, are costly, labor-intensive, and complex. This study presents the development of a novel microfluidic optical aptasensor for rapid detection of small molecules based on analyte-tuned growth of gold nanoseeds combined with machine learning-enhanced spectrum analysis. We discovered and optimized a previously unreported growth pattern of aptamer-coated nanoparticles in the presence of different concentrations of analyte, enabling the detection of a major mycotoxin in food. The entire analysis was miniaturized on a customized microfluidic platform, allowing for automated spectral acquisition with precise liquid manipulation. A machine learning model, based on random forest with feature engineering, was developed and evaluated for spectrum analysis, significantly enhancing the prediction of mycotoxin concentrations. This approach extended the detection limit determined by the conventional method (∼72 ppb with high variation) to a wider range of 10 ppb to 100 ppm with high accuracy (overall mean absolute percentage error of 5.7%). The developed analytical tool provides a promising solution for detecting small molecules and monitoring chemical hazards in agri-food systems and the environment.

摘要

天然毒素主要是小分子,是农业食品系统中一类对公共健康和食品安全构成威胁的化学危害物。目前监测这些毒素的标准方法主要基于液相色谱-质谱法,这些方法既昂贵又劳动密集,而且复杂。本研究提出了一种基于金纳米种子分析物调谐生长与机器学习增强光谱分析的小分子快速检测新型微流控光适体传感器。我们发现并优化了在不同分析物浓度存在下适体涂层纳米颗粒的先前未报道的生长模式,从而能够检测食品中的一种主要真菌毒素。整个分析在定制的微流控平台上进行微型化,允许进行精确的液体处理和自动化光谱采集。基于特征工程的随机森林开发并评估了用于光谱分析的机器学习模型,大大提高了真菌毒素浓度的预测能力。该方法将传统方法(∼72 ppb 且变化较大)确定的检测限扩展到更宽的范围,从 10 ppb 到 100 ppm,具有很高的准确性(总体平均绝对百分比误差为 5.7%)。所开发的分析工具为检测农业食品系统和环境中的小分子以及化学危害物提供了一种有前途的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验