Suppr超能文献

作用机制的多样性和功能作用决定了细菌PGP磷酸酶的底物特异性和配体结合。

Mechanistic diversity and functional roles define the substrate specificity and ligand binding of bacterial PGP phosphatases.

作者信息

Niu Wei, Lam Joanne Shi Woon, Vu Trung, Du Guangwei, Fan Hao, Zheng Lei

机构信息

Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA.

Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore.

出版信息

J Biol Chem. 2024 Dec;300(12):107959. doi: 10.1016/j.jbc.2024.107959. Epub 2024 Nov 5.

Abstract

Phosphatidylglycerol is a critical membrane phospholipid in microorganisms, synthesized via the dephosphorylation of phosphatidylglycerol-phosphate (PGP) by three membrane-bound phosphatases: PgpA, PgpB, and PgpC. While any one of these enzymes can produce phosphatidylglycerol at WT levels, the reason for the presence of all three in bacteria remains unclear. To address this question, we characterized these phosphatases in vitro to uncover their mechanistic differences. Our assays demonstrated that all three enzymes catalyze the hydrolysis of PGP but exhibit distinct substrate selectivity. PgpB displays a broad substrate range, dephosphorylating various lipid phosphates, while PgpA and PgpC show a higher specificity for lysophosphatidic acid and PGP. Notably, PgpA also effectively dephosphorylates soluble metabolites, such as glycerol-3-phosphate and glyceraldehyde-3-phosphate, suggesting its unique substrate-binding mechanism that relies on precise recognition of the glycerol head group rather than the fatty acid. Inhibitor screening with synthetic substrate analogs revealed that PgpB is inhibited by lipid-like compounds XY-14 and XY-55, whereas PgpA and PgpC are unaffected. Structural analysis and mutational studies identified two charged residues at the catalytic site entry for inhibitor binding in PgpB and support the notion that the PgpB maintains a large substrate binding site to accommodate multiple ligand binding conformations. These findings underscore the distinct substrate recognition mechanisms and possible functional roles of PgpA, PgpB, and PgpC in bacterial lipid metabolism and offer insights for developing novel inhibitors targeting bacterial membrane phospholipid biosynthesis.

摘要

磷脂酰甘油是微生物中的一种关键膜磷脂,通过三种膜结合磷酸酶:PgpA、PgpB和PgpC对磷脂酰甘油磷酸(PGP)进行去磷酸化作用来合成。虽然这些酶中的任何一种都能在野生型水平产生磷脂酰甘油,但细菌中同时存在这三种酶的原因仍不清楚。为了解决这个问题,我们在体外对这些磷酸酶进行了表征,以揭示它们的机制差异。我们的分析表明,所有这三种酶都催化PGP的水解,但表现出不同的底物选择性。PgpB显示出广泛的底物范围,能使各种脂质磷酸去磷酸化,而PgpA和PgpC对溶血磷脂酸和PGP表现出更高的特异性。值得注意的是,PgpA还能有效地使可溶性代谢物,如3-磷酸甘油和3-磷酸甘油醛去磷酸化,这表明其独特的底物结合机制依赖于对甘油头部基团而非脂肪酸的精确识别。用合成底物类似物进行的抑制剂筛选表明,PgpB被脂质样化合物XY-14和XY-55抑制,而PgpA和PgpC不受影响。结构分析和突变研究确定了PgpB催化位点入口处有两个带电荷的残基用于抑制剂结合,并支持了PgpB维持一个大的底物结合位点以容纳多种配体结合构象的观点。这些发现强调了PgpA、PgpB和PgpC在细菌脂质代谢中不同的底物识别机制和可能的功能作用,并为开发针对细菌膜磷脂生物合成的新型抑制剂提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eb1/11629553/5f211b33c77d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验