From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology and.
the Departments of Biochemistry and Molecular Biology and.
J Biol Chem. 2018 Mar 2;293(9):3386-3398. doi: 10.1074/jbc.RA117.001231. Epub 2018 Jan 18.
Secretory phospholipases A (sPLAs) are potent components of mammalian innate-immunity antibacterial mechanisms. sPLA enzymes attack bacteria by hydrolyzing bacterial membrane phospholipids, causing membrane disorganization and cell lysis. However, most Gram-negative bacteria are naturally resistant to sPLA Here we report a novel resistance mechanism to mammalian sPLA in , mediated by a phospholipid repair system consisting of the lysophospholipid transporter LplT and the acyltransferase Aas in the cytoplasmic membrane. Mutation of the or gene abolished bacterial lysophospholipid acylation activity and drastically increased bacterial susceptibility to the combined actions of inflammatory fluid components and sPLA, resulting in bulk phospholipid degradation and loss of colony-forming ability. sPLA-mediated hydrolysis of the three major bacterial phospholipids exhibited distinctive kinetics and deacylation of cardiolipin to its monoacyl-derivative closely paralleled bacterial death. Characterization of the membrane envelope in - or -knockout mutant bacteria revealed reduced membrane packing and disruption of lipid asymmetry with more phosphatidylethanolamine present in the outer leaflet of the outer membrane. Moreover, modest accumulation of lysophospholipids in these mutant bacteria destabilized the inner membrane and rendered outer membrane-depleted spheroplasts much more sensitive to sPLA These findings indicated that LplT/Aas inactivation perturbs both the outer and inner membranes by bypassing bacterial membrane maintenance mechanisms to trigger specific interfacial activation of sPLA We conclude that the LplT/Aas system is important for maintaining the integrity of the membrane envelope in Gram-negative bacteria. Our insights may help inform new therapeutic strategies to enhance host sPLA antimicrobial activity.
分泌型磷脂酶 A(sPLA)是哺乳动物先天免疫抗菌机制中的有力成分。sPLA 酶通过水解细菌膜磷脂来攻击细菌,导致膜结构紊乱和细胞裂解。然而,大多数革兰氏阴性菌天然对 sPLA 具有抗性。在这里,我们报告了一种新的耐哺乳动物 sPLA 的机制,该机制由质膜中的溶血磷脂转运蛋白 LplT 和酰基转移酶 Aas 组成的磷脂修复系统介导。突变 或 基因消除了细菌溶血磷脂酰化活性,并大大增加了细菌对炎症液成分和 sPLA 的联合作用的敏感性,导致大量磷脂降解和丧失形成菌落的能力。sPLA 介导的三种主要细菌磷脂的水解表现出独特的动力学,而心磷脂的去酰化与其单酰衍生物密切平行,与细菌死亡密切相关。在 或 -敲除突变体细菌中对膜包膜的特征分析表明,膜包装减少,脂质不对称性破坏,外膜外层中存在更多的磷脂酰乙醇胺。此外,这些突变体细菌中溶血磷脂的适度积累使内膜不稳定,并使外膜耗尽的球形体对 sPLA 更加敏感。这些发现表明,LplT/Aas 失活通过绕过细菌膜维持机制干扰外膜和内膜,从而触发 sPLA 的特定界面激活。我们得出结论,LplT/Aas 系统对于维持革兰氏阴性菌膜包膜的完整性很重要。我们的研究结果可能有助于为增强宿主 sPLA 抗菌活性提供新的治疗策略。