Rehman Abdul, van de Kruijs Robbert W E, van den Beld Wesley T E, Sturm Jacobus M, Ackermann Marcelo
Industrial Focus Group XUV Optics, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, 7522NB Enschede, Netherlands.
J Phys Chem Lett. 2024 Nov 21;15(46):11462-11467. doi: 10.1021/acs.jpclett.4c02259. Epub 2024 Nov 8.
Amidst the growing importance of hydrogen in a sustainable future, it is crucial to develop coatings that can protect hydrogen-sensitive system components in reactive hydrogen environments. However, the prediction of the chemical stability of materials in hydrogen is not fully understood. In this study, we show that the work function is a key parameter determining the reducibility (i.e., denitridation) of transition metal nitrides (TMNs) in hydrogen radicals (H*) at elevated temperatures. We demonstrate that, when the work function of a TMN system drops below a threshold limit (ϕ), its reduction effectively stops. We propose that this is due to the preferential binding of H* to transition metal (TM) atoms rather than N atoms, which makes the formation of volatile species (NH) unfavorable. This finding provides a novel perspective for comprehending the interaction of hydrogen with TM compounds and allows prediction of the chemical stability of hydrogen-protective coatings.
在氢对于可持续未来日益重要的背景下,开发能够在活性氢环境中保护对氢敏感的系统组件的涂层至关重要。然而,材料在氢中的化学稳定性预测尚未完全明晰。在本研究中,我们表明功函数是决定过渡金属氮化物(TMNs)在高温下氢自由基(H*)中还原性(即脱氮)的关键参数。我们证明,当TMN系统的功函数降至阈值极限(ϕ)以下时,其还原作用会有效停止。我们认为这是由于H*优先与过渡金属(TM)原子而非N原子结合,这使得挥发性物种(NH)的形成变得不利。这一发现为理解氢与TM化合物的相互作用提供了新视角,并有助于预测氢保护涂层的化学稳定性。