Suppr超能文献

BrainNet:一种利用皮电活动信号和XLNet模型进行脑应激预测的自动化方法。

BrainNet: an automated approach for brain stress prediction utilizing electrodermal activity signal with XLNet model.

作者信息

Xuanzhi Liao, Hakeem Abeer, Mohaisen Linda, Umer Muhammad, Khan Muhammad Attique, Alsenan Shrooq, Alsubai Shtwai, Innab Nisreen

机构信息

College of Electronic and Information Engineering, Beibu Gulf University, Qinzhou, China.

Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia.

出版信息

Front Comput Neurosci. 2024 Oct 24;18:1482994. doi: 10.3389/fncom.2024.1482994. eCollection 2024.

Abstract

Brain stress monitoring has emerged as a critical research area for understanding and managing stress and neurological health issues. This burgeoning field aims to provide accurate information and prediction about individuals' stress levels by analyzing behavioral data and physiological signals. To address this emerging problem, this research study proposes an innovative approach that uses an attention mechanism-based XLNet model (called BrainNet) for continuous stress monitoring and stress level prediction. The proposed model analyzes streams of brain data, including behavioral and physiological signal patterns using Swell and WESAD datasets. Testing on the Swell multi-class dataset, the model achieves an impressive accuracy of 95.76%. Furthermore, when evaluated on the WESAD dataset, it demonstrates even higher accuracy, reaching 98.32%. When applied to the binary classification of stress and no stress using the Swell dataset, the model achieves an outstanding accuracy of 97.19%. Comparative analysis with other previously published research studies underscores the superior performance of the proposed approach. In addition, cross-validation confirms the significance, efficacy, and robustness of the model in brain stress level prediction and aligns with the goals of smart diagnostics for understanding neurological behaviors.

摘要

大脑压力监测已成为理解和管理压力及神经健康问题的关键研究领域。这一新兴领域旨在通过分析行为数据和生理信号,提供有关个体压力水平的准确信息和预测。为解决这一新兴问题,本研究提出一种创新方法,即使用基于注意力机制的XLNet模型(称为BrainNet)进行连续压力监测和压力水平预测。所提出的模型使用Swell和WESAD数据集,分析包括行为和生理信号模式在内的脑数据流。在Swell多类数据集上进行测试时,该模型实现了95.76%的惊人准确率。此外,在WESAD数据集上进行评估时,它表现出更高的准确率,达到98.32%。当使用Swell数据集应用于压力与无压力的二元分类时,该模型实现了97.19%的出色准确率。与其他先前发表的研究进行的比较分析强调了所提出方法的卓越性能。此外,交叉验证证实了该模型在大脑压力水平预测中的重要性、有效性和稳健性,并与理解神经行为的智能诊断目标相一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验