Suppr超能文献

用于使用脑电图(EEG)信号检测癫痫发作的新型深度学习框架。

Novel deep learning framework for detection of epileptic seizures using EEG signals.

作者信息

Mallick Sayani, Baths Veeky

机构信息

Cognitive Neuroscience Laboratory, Department of Electrical and Electronics Engineering, BITS Pilani, KK Birla Goa Campus, Pilani, Goa, India.

Cognitive Neuroscience Laboratory, Department of Biological Sciences, BITS Pilani, KK Birla Goa Campus, Pilani, Goa, India.

出版信息

Front Comput Neurosci. 2024 Mar 21;18:1340251. doi: 10.3389/fncom.2024.1340251. eCollection 2024.

Abstract

INTRODUCTION

Epilepsy is a chronic neurological disorder characterized by abnormal electrical activity in the brain, often leading to recurrent seizures. With 50 million people worldwide affected by epilepsy, there is a pressing need for efficient and accurate methods to detect and diagnose seizures. Electroencephalogram (EEG) signals have emerged as a valuable tool in detecting epilepsy and other neurological disorders. Traditionally, the process of analyzing EEG signals for seizure detection has relied on manual inspection by experts, which is time-consuming, labor-intensive, and susceptible to human error. To address these limitations, researchers have turned to machine learning and deep learning techniques to automate the seizure detection process.

METHODS

In this work, we propose a novel method for epileptic seizure detection, leveraging the power of 1-D Convolutional layers in combination with Bidirectional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) and Average pooling Layer as a single unit. This unit is repeatedly used in the proposed model to extract the features. The features are then passed to the Dense layers to predict the class of the EEG waveform. The performance of the proposed model is verified on the Bonn dataset. To assess the robustness and generalizability of our proposed architecture, we employ five-fold cross-validation. By dividing the dataset into five subsets and iteratively training and testing the model on different combinations of these subsets, we obtain robust performance measures, including accuracy, sensitivity, and specificity.

RESULTS

Our proposed model achieves an accuracy of 99-100% for binary classifications into seizure and normal waveforms, 97.2%-99.2% accuracy for classifications into normal-interictal-seizure waveforms, 96.2%-98.4% accuracy for four class classification and accuracy of 95.81%-98% for five class classification.

DISCUSSION

Our proposed models have achieved significant improvements in the performance metrics for the binary classifications and multiclass classifications. We demonstrate the effectiveness of the proposed architecture in accurately detecting epileptic seizures from EEG signals by using EEG signals of varying lengths. The results indicate its potential as a reliable and efficient tool for automated seizure detection, paving the way for improved diagnosis and management of epilepsy.

摘要

引言

癫痫是一种慢性神经系统疾病,其特征是大脑中出现异常电活动,常导致反复发作的癫痫发作。全球有5000万人受癫痫影响,因此迫切需要高效、准确的方法来检测和诊断癫痫发作。脑电图(EEG)信号已成为检测癫痫和其他神经系统疾病的重要工具。传统上,分析EEG信号以检测癫痫发作的过程依赖于专家的人工检查,这既耗时又费力,还容易出现人为错误。为解决这些局限性,研究人员已转向机器学习和深度学习技术,以实现癫痫发作检测过程的自动化。

方法

在这项工作中,我们提出了一种用于癫痫发作检测的新方法,利用一维卷积层的能力,结合双向长短期记忆(LSTM)、门控循环单元(GRU)和平均池化层作为一个单元。该单元在提出的模型中被反复使用以提取特征。然后将这些特征传递到全连接层以预测EEG波形的类别。所提出模型的性能在波恩数据集上得到验证。为评估我们提出的架构的稳健性和通用性,我们采用五折交叉验证。通过将数据集划分为五个子集,并在这些子集的不同组合上迭代训练和测试模型,我们获得了稳健的性能指标,包括准确率、灵敏度和特异性。

结果

我们提出的模型在癫痫发作和正常波形的二分类中准确率达到99 - 100%,在正常 - 发作间期 - 癫痫发作波形分类中的准确率为97.2% - 99.2%,四分类的准确率为96.2% - 98.4%,五分类的准确率为95.81% - 98%。

讨论

我们提出的模型在二分类和多分类的性能指标上取得了显著改进。我们通过使用不同长度的EEG信号,证明了所提出架构在从EEG信号中准确检测癫痫发作方面的有效性。结果表明其作为自动癫痫发作检测的可靠且高效工具的潜力,为改善癫痫的诊断和管理铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7407/11000706/db485f6628b0/fncom-18-1340251-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验