Suppr超能文献

用于肘关节康复的软质气动肌肉的研制与评估。

Development and evaluation of a soft pneumatic muscle for elbow joint rehabilitation.

作者信息

Orban Mostafa, Guo Kai, Luo Caijun, Yang Hongbo, Badr Karim, Elsamanty Mahmoud

机构信息

School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.

出版信息

Front Bioeng Biotechnol. 2024 Oct 24;12:1401686. doi: 10.3389/fbioe.2024.1401686. eCollection 2024.

Abstract

Elbow joint rehabilitation presents a formidable challenge, underscored by the joint's complex biomechanics and high vulnerability to injuries and degenerative conditions. Despite the advancements in rehabilitative technology, current solutions such as rigid exoskeletons often fall short in providing the precision, flexibility, and customization needed for effective treatment. Although traditional robotic aids, such as rigid exoskeletons, help recover, they lack in providing sufficient flexibility, comfort, and easy customization with no need for complicated calculation and complex design considerations. The introduction of soft pneumatic muscles marks a significant development in the rehabilitation technologies field, offering distinct advantages and unique challenges when compared to conventional rigid systems. These flexible actuators closely mimic the elasticity of biological tissues, improving safety and interaction between humans and machines. Designed for individualized therapy, its versatility allows application in various rehabilitation scenarios, from clinical settings to home settings. The novelty of this approach lies in the development of biomechanically-compliant soft pneumatic muscles optimized for precise rotational control of the elbow joint, coupled with an advanced deep learning-based motion tracking system. This design overcomes limitations in force control, stability, and pressure requirements found in existing pneumatic-based systems, improving the safety and efficacy of elbow rehabilitation. In this study, the design, fabrication and systematic evaluation of a soft pneumatic muscle for elbow rehabilitation are presented. The device is designed to closely simulate the complex biomechanical movements of the elbow, with a primary focus on the rotational motions that are essential for controlling flexion and extension, as well as positioning the wrist during grasping tasks. Through the integration of precise geometric parameters, the actuator is capable of controlled flexion and extension, reflecting the natural kinematics of the elbow. Employing a rigorous methodology, the research integrates finite element analysis with empirical testing to refine the actuator's performance. Under varying air pressures, the soft muscle demonstrated remarkable deformation along the X-axis (10-150 mm) and the Y-axis, indicative of its symmetrical rotational behavior, while maintaining minimal elongation along the Z-axis (0.003 mm max), and proper lifiting force under a maximum wight of 470 gm. highlighting the stability and targeted response of the device to pneumatic actuation. A specialized experimental apparatus comprising a 3D environment, a pneumatic circuit, a LabVIEW-based control system, and a deep learning algorithm was developed for accurate position estimation. The algorithm achieved a high predictive accuracy of 99.8% in spatial coordination tracking, indicating the precision of the system in monitoring and controlling the actuator's motion.

摘要

肘关节康复是一项艰巨的挑战,该关节复杂的生物力学以及对损伤和退行性疾病的高度易感性凸显了这一点。尽管康复技术有所进步,但诸如刚性外骨骼等当前解决方案在提供有效治疗所需的精度、灵活性和定制性方面往往存在不足。虽然传统的机器人辅助设备,如刚性外骨骼,有助于康复,但它们缺乏足够的灵活性、舒适性,且难以轻松定制,还需要复杂的计算和设计考量。软质气动肌肉的引入标志着康复技术领域的重大发展,与传统刚性系统相比,具有明显优势和独特挑战。这些柔性致动器紧密模仿生物组织的弹性,改善了人机之间的安全性和交互性。其专为个性化治疗设计,通用性使其可应用于从临床环境到家庭环境的各种康复场景。这种方法的新颖之处在于开发了针对肘关节精确旋转控制进行优化的生物力学顺应性软质气动肌肉,并结合了先进的基于深度学习的运动跟踪系统。这种设计克服了现有气动系统在力控制、稳定性和压力要求方面的局限性,提高了肘关节康复的安全性和有效性。在本研究中,展示了一种用于肘关节康复的软质气动肌肉的设计、制造和系统评估。该装置旨在紧密模拟肘关节复杂的生物力学运动,主要关注控制屈伸以及在抓握任务中定位手腕所必需的旋转运动。通过整合精确的几何参数,该致动器能够进行可控的屈伸,反映了肘关节的自然运动学。该研究采用严谨的方法,将有限元分析与实证测试相结合以优化致动器的性能。在不同气压下,软质肌肉在X轴(10 - 150毫米)和Y轴上表现出显著变形,表明其对称的旋转行为,同时在Z轴上保持最小伸长(最大0.003毫米),并且在最大重量470克下具有适当的提升力,突出了该装置对气动驱动的稳定性和靶向响应。为了进行精确的位置估计,开发了一种专门的实验装置,包括3D环境、气动回路、基于LabVIEW的控制系统和深度学习算法。该算法在空间坐标跟踪中实现了99.8%的高预测准确率,表明该系统在监测和控制致动器运动方面的精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bae/11541107/711a21e699f5/fbioe-12-1401686-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验