Suppr超能文献

基于 RNA-Seq 的层分析揭示了胃癌的分子复杂性。

Layer Analysis Based on RNA-Seq Reveals Molecular Complexity of Gastric Cancer.

机构信息

Department of Medical Oncology, Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain.

Molecular Oncology Laboratory, Institute of Medical and Molecular Genetics-INGEMM, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain.

出版信息

Int J Mol Sci. 2024 Oct 22;25(21):11371. doi: 10.3390/ijms252111371.

Abstract

Gastric adenocarcinoma (GA) is a significant global health issue with poor prognosis, despite advancements in treatment. Although molecular classifications, such as The Cancer Genome Atlas (TCGA), provide valuable insights, their clinical utility remains limited. We performed a multi-layered functional analysis using TCGA RNA sequencing data to better define molecular subtypes and explore therapeutic implications. We reanalyzed TCGA RNA-seq data from 142 GA patients with localized disease who received adjuvant chemotherapy. Our approach included probabilistic graphical models and recurrent sparse k-means/consensus cluster algorithms for layer-based analysis. Our findings revealed survival differences among TCGA groups, with the GS subtype showing the poorest prognosis. We identified twelve functional nodes and seven biological layers, each with distinct functions. The combined molecular layer (CML) classification identified three prognostic groups that align with TCGA subtypes. CML2 (GS-like) displayed gene expression related to lipid metabolism, correlating with worse survival. Transcriptomic heterogeneity within the CIN subtype revealed clusters tied to proteolysis and lipid metabolism. We identified a subset of CIN tumors with profiles similar to MSI, termed CIN-MSI-like. Claudin-18, a key gene in proteolysis, was overexpressed across TCGA subtypes, suggesting it is a potential therapeutic target. Our study advances GA biology, enabling refined stratification and personalized treatment. Further studies are needed to translate these findings into clinical practice.

摘要

胃腺癌(GA)是一个严重的全球健康问题,尽管治疗有所进展,但预后仍较差。尽管分子分类,如癌症基因组图谱(TCGA),提供了有价值的见解,但它们的临床应用仍然有限。我们使用 TCGA RNA 测序数据进行了多层次的功能分析,以更好地定义分子亚型并探索治疗意义。我们重新分析了 142 名接受辅助化疗的局限性疾病 GA 患者的 TCGA RNA-seq 数据。我们的方法包括概率图模型和递归稀疏 k-means/共识聚类算法进行基于层的分析。我们的研究结果显示 TCGA 组之间存在生存差异,GS 亚型的预后最差。我们确定了 12 个功能节点和 7 个生物学层,每个都具有独特的功能。综合分子层(CML)分类确定了三个与 TCGA 亚型一致的预后组。CML2(GS 样)显示与脂质代谢相关的基因表达,与较差的生存相关。CIN 亚型内的转录组异质性揭示了与蛋白水解和脂质代谢相关的聚类。我们确定了一小部分 CIN 肿瘤具有与 MSI 相似的特征,称为 CIN-MSI 样。 Claudin-18 是蛋白水解的关键基因,在 TCGA 亚型中过表达,表明它是一个潜在的治疗靶点。我们的研究推进了 GA 生物学,实现了更精细的分层和个性化治疗。需要进一步的研究将这些发现转化为临床实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c6/11545517/249379f4d6ef/ijms-25-11371-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验