Zubairova Ulyana S, Fomin Ivan N, Koloshina Kristina A, Barchuk Alisa I, Erst Tatyana V, Chalaya Nadezhda A, Gerasimova Sophia V, Doroshkov Alexey V
The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
Department of Information Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia.
Plants (Basel). 2024 Nov 1;13(21):3084. doi: 10.3390/plants13213084.
The epidermal leaf patterns of plants exhibit remarkable diversity in cell shapes, sizes, and arrangements, driven by environmental interactions that lead to significant adaptive changes even among closely related species. The Solanaceae family, known for its high diversity of adaptive epidermal structures, has traditionally been studied using qualitative phenotypic descriptions. To advance this, we developed a workflow combining multi-scale computer vision, image processing, and data analysis to extract digital descriptors for leaf epidermal cell morphology. Applied to nine wild potato species, this workflow quantified key morphological parameters, identifying descriptors for trichomes, stomata, and pavement cells, and revealing interdependencies among these traits. Principal component analysis (PCA) highlighted two main axes, accounting for 45% and 21% of variance, corresponding to features such as guard cell shape, trichome length, stomatal density, and trichome density. These axes aligned well with the historical and geographical origins of the species, separating southern from Central American species, and forming distinct clusters for monophyletic groups. This workflow thus establishes a quantitative foundation for investigating leaf epidermal cell morphology within phylogenetic and geographic contexts.
植物的表皮叶模式在细胞形状、大小和排列上表现出显著的多样性,这是由环境相互作用驱动的,这种相互作用甚至在亲缘关系密切的物种之间也会导致显著的适应性变化。茄科以其适应性表皮结构的高度多样性而闻名,传统上一直使用定性的表型描述进行研究。为了推动这一研究,我们开发了一种工作流程,将多尺度计算机视觉、图像处理和数据分析相结合,以提取叶表皮细胞形态的数字描述符。将该工作流程应用于九种野生马铃薯物种,量化了关键形态参数,确定了毛状体、气孔和铺路细胞的描述符,并揭示了这些性状之间的相互依赖性。主成分分析(PCA)突出了两个主要轴,分别解释了45%和21%的方差,对应于保卫细胞形状、毛状体长度、气孔密度和毛状体密度等特征。这些轴与物种的历史和地理起源高度吻合,将南美洲南部的物种与中美洲的物种区分开来,并为单系类群形成了不同的聚类。因此,该工作流程为在系统发育和地理背景下研究叶表皮细胞形态奠定了定量基础。