Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture, Laboratory of Plant Developmental Genetics, University of Sao Paulo, Piracicaba, SP, 13418-900, Brazil.
Department of Plant Physiology, Green Life Science Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
Planta. 2021 Jun 23;254(1):11. doi: 10.1007/s00425-021-03651-y.
Cultivated tomatoes harboring the plastid-derived sesquiterpenes from S. habrochaites have altered type-VI trichome morphology and unveil additional genetic components necessary for piercing-sucking pest resistance. Arthropod resistance in the tomato wild relative Solanum habrochaites LA1777 is linked to specific sesquiterpene biosynthesis. The Sesquiterpene synthase 2 (SsT2) gene cluster on LA1777 chromosome 8 controls plastid-derived sesquiterpene synthesis. The main genes at SsT2 are Z-prenyltransferase (zFPS) and Santalene and Bergamotene Synthase (SBS), which produce α-santalene, β-bergamotene, and α-bergamotene in LA1777 round-shaped type-VI glandular trichomes. Cultivated tomatoes have mushroom-shaped type-VI trichomes with much smaller glands that contain low levels of monoterpenes and cytosolic-derived sesquiterpenes, not presenting the same pest resistance as in LA1777. We successfully transferred zFPS and SBS from LA1777 to cultivated tomato (cv. Micro-Tom, MT) by a backcrossing approach. The trichomes of the MT-Sst2 introgressed line produced high levels of the plastid-derived sesquiterpenes. The type-VI trichome internal storage-cavity size increased in MT-Sst2, probably as an effect of the increased amount of sesquiterpenes, although it was not enough to mimic the round-shaped LA1777 trichomes. The presence of high amounts of plastid-derived sesquiterpenes was also not sufficient to confer resistance to various tomato piercing-sucking pests, indicating that the effect of the sesquiterpenes found in the wild S. habrochaites can be insect specific. Our results provide for a better understanding of the morphology of S. habrochaites type-VI trichomes and paves the way to obtain insect-resistant tomatoes.
栽培番茄含有来自 S. habrochaites 的质体衍生倍半萜,其改变了 VI 型毛状体形态,并揭示了刺穿吸食害虫抗性所必需的其他遗传成分。番茄野生近缘种 S. habrochaites LA1777 的节肢动物抗性与特定倍半萜生物合成有关。LA1777 染色体 8 上的 Sesquiterpene synthase 2(SsT2)基因簇控制质体衍生倍半萜的合成。SsT2 的主要基因是 Z-prenyltransferase(zFPS)和 Santalene 和 Bergamotene Synthase(SBS),它们在 LA1777 圆形 VI 型腺毛状体中产生 α-檀香烯、β-佛手烯和 α-佛手烯。栽培番茄具有蘑菇形 VI 型毛状体,其腺体较小,含有低水平的单萜和细胞质衍生的倍半萜,不具有与 LA1777 相同的害虫抗性。我们通过回交方法成功地将 zFPS 和 SBS 从 LA1777 转移到栽培番茄(cv. Micro-Tom,MT)。MT-Sst2 导入系的毛状体产生高水平的质体衍生倍半萜。MT-Sst2 的 VI 型毛状体内部储存腔的大小增加,可能是由于倍半萜数量增加的影响,尽管不足以模拟 LA1777 圆形毛状体。大量质体衍生倍半萜的存在也不足以赋予对各种番茄刺穿吸食害虫的抗性,这表明在野生 S. habrochaites 中发现的倍半萜的作用可能是昆虫特异性的。我们的结果为更好地理解 S. habrochaites VI 型毛状体的形态学提供了依据,并为获得抗虫番茄铺平了道路。