Suppr超能文献

靶向CRISPR对ZNF865的调控增强了工程化椎间盘中干细胞软骨沉积、组织成熟率和力学性能。

Targeted CRISPR regulation of ZNF865 enhances stem cell cartilage deposition, tissue maturation rates, and mechanical properties in engineered intervertebral discs.

作者信息

Levis Hunter, Lewis Christian, Fainor Matthew, Lawal Ameerah, Stockham Elise, Weston Jacob, Farhang Niloofar, Gullbrand Sarah E, Bowles Robby D

机构信息

Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.

Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States.

出版信息

Acta Biomater. 2025 Jan 1;191:276-291. doi: 10.1016/j.actbio.2024.11.007. Epub 2024 Nov 8.

Abstract

Cell and tissue engineering based approaches have garnered significant interest for treating intervertebral disc degeneration and associated low back pain due to the substantial limitations of currently available clinical treatments. Herein we present a clustered regularly interspaced short palindromic repeats (CRISPR)-guided gene modulation strategy to improve the therapeutic potential of cell and tissue engineering therapies for treating intervertebral disc disease. Recently, we discovered a zinc finger (ZNF) protein, ZNF865 (BLST), which is associated with no in-depth publications and has not been functionally characterized. Utilizing CRISPR-guided gene modulation, we show that ZNF865 regulates cell cycle progression and protein processing. As a result, regulating this gene acts as a primary titratable regulator of cell activity. We also demonstrate that targeted ZNF865 regulation can enhance protein production and fibrocartilage-like matrix deposition in human adipose-derived stem cells (hASCs). Furthermore, we demonstrate CRISPR-engineered hASCs ability to increase GAG and collagen II matrix deposition in human-size tissue-engineered discs by 8.5-fold and 88.6-fold, respectively, while not increasing collagen X expression compared to naive hASCs dosed with growth factors. With this increased tissue deposition, we observe significant improvements in compressive mechanical properties, generating a stiffer and more robust tissue. Overall, we present novel biology on ZNF865 and display the power of CRISPR-cell engineering to enhance strategies treating musculoskeletal disease. STATEMENT OF SIGNIFICANCE: This work reports on a novel gene, ZNF865 (also known as BLST), that when regulated with CRISPRa, improves cartilagenous tissue deposition in human sized tissue engineering constructs. Producing tissue engineering constructs at human scale has proven difficult, and this strategy presents a broadly applicable tool to enhance a cells ability to produce tissue at these scales, as we saw an ∼8-88 fold increase in tissue deposition and significantly improved biomechanics in large tissue engineered intervertebral disc compared to traditional growth factor differentiation methods. Additionally, this work begins to elucidate the biology of this novel zinc finger protein, which appears to be critical in regulating cell function and activity.

摘要

由于目前可用的临床治疗方法存在重大局限性,基于细胞和组织工程的方法在治疗椎间盘退变及相关下腰痛方面引起了极大关注。在此,我们提出一种成簇规律间隔短回文重复序列(CRISPR)引导的基因调控策略,以提高细胞和组织工程疗法治疗椎间盘疾病的治疗潜力。最近,我们发现了一种锌指(ZNF)蛋白ZNF865(BLST),目前尚无关于该蛋白的深入研究报道,其功能也未得到表征。利用CRISPR引导的基因调控,我们发现ZNF865可调节细胞周期进程和蛋白质加工。因此,调控该基因可作为细胞活性的主要可滴定调节剂。我们还证明,靶向调控ZNF865可增强人脂肪干细胞(hASC)中的蛋白质产生和纤维软骨样基质沉积。此外,我们证明经CRISPR工程改造的hASC能够使人体尺寸的组织工程椎间盘内的糖胺聚糖(GAG)和II型胶原蛋白基质沉积分别增加8.5倍和88.6倍,同时与用生长因子处理的未处理hASC相比,不会增加X型胶原蛋白的表达。随着组织沉积的增加,我们观察到压缩力学性能有显著改善,产生了更硬且更坚固的组织。总体而言,我们展示了关于ZNF865的新生物学特性,并展示了CRISPR细胞工程在增强肌肉骨骼疾病治疗策略方面的力量。重要性声明:本研究报道了一种新基因ZNF865(也称为BLST),当用CRISPRa进行调控时,可改善人体尺寸的组织工程构建物中的软骨组织沉积。事实证明,在人体尺度上生产组织工程构建物具有挑战性,而本策略提供了一种广泛适用的工具,可增强细胞在这些尺度上产生组织的能力,因为与传统的生长因子分化方法相比,我们观察到在大型组织工程椎间盘中组织沉积增加了约8 - 88倍,生物力学性能也显著改善。此外,这项工作开始阐明这种新型锌指蛋白的生物学特性,该蛋白似乎在调节细胞功能和活性方面至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验