Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada.
Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States; Codiga Resource Recovery Center (CR2C), Stanford, CA, United States.
Biotechnol Adv. 2024 Dec;77:108474. doi: 10.1016/j.biotechadv.2024.108474. Epub 2024 Nov 7.
Currently, global annual CO emissions from fossil fuel consumption are extremely high, surpassing tens of billions of tons, yet our capacity to capture and utilize CO remains below a small fraction of the amount generated. Microbial electrosynthesis (MES) systems, an integration of microbial metabolism with electrochemistry, have emerged as a highly efficient and promising bio-based carbon-capture-and-utilization technology over other conventional techniques. MES is a unique technology for lowering the atmospheric CO as well as CO in the biogas, and also simultaneously convert them to renewable bioenergy, such as biomethane. As such, MES techniques could be applied for biogas upgrading to generate high purity biomethane, which has the potential to meet natural gas standards. This article offers a detailed overview and assessment of the latest advancements in MES for biomethane production and biogas upgrading, in terms of selecting optimal methane production pathways and associated electron transfer processes, different electrode materials and types, inoculum sources and microbial communities, ion-exchange membrane, externally applied energy level, operating temperature and pH, mode of operation, CO delivery method, selection of inorganic carbon source and its concentration, start-up time, and system pressure. It also highlights the current MES challenges associated with upscaling, design and configuration, long-term stability, energy demand, techno-economics, achieving net negative carbon emission, and other operational issues. Moreover, we provide a summary of current and future opportunities to integrate MES with other unique biosystems, such as methanotrophic bioreactors, and incorporate quorum sensing, 3D printing, and machine learning to further develop MES as a better biomethane-producer and biogas upgrading technique.
目前,全球每年因化石燃料消耗而产生的二氧化碳排放量极高,超过了数十亿吨,但我们的二氧化碳捕获和利用能力仍不到产生量的一小部分。微生物电解合成(MES)系统是微生物代谢与电化学的结合,作为一种高效、有前途的生物碳捕获和利用技术,已经超越了其他传统技术。MES 是一种降低大气中 CO 和沼气中 CO 的独特技术,同时还可以将它们转化为可再生的生物能源,如生物甲烷。因此,MES 技术可应用于沼气升级,以生产高纯度的生物甲烷,从而有可能达到天然气标准。本文详细介绍和评估了用于生物甲烷生产和沼气升级的 MES 的最新进展,包括选择最佳的甲烷生产途径和相关电子传递过程、不同的电极材料和类型、接种物来源和微生物群落、离子交换膜、外加能量水平、操作温度和 pH 值、操作模式、CO 输送方法、无机碳源的选择及其浓度、启动时间和系统压力。还强调了与扩大规模、设计和配置、长期稳定性、能源需求、技术经济、实现净负碳排放以及其他操作问题相关的当前 MES 挑战。此外,我们还总结了当前和未来将 MES 与其他独特生物系统(如甲烷氧化生物反应器)集成的机会,并结合群体感应、3D 打印和机器学习,进一步将 MES 发展为更好的生物甲烷生产和沼气升级技术。