Suppr超能文献

带电钙钛矿表面析出的金属纳米颗粒的热稳定性和聚并动力学

Thermal stability and coalescence dynamics of exsolved metal nanoparticles at charged perovskite surfaces.

作者信息

Weber Moritz L, Jennings Dylan, Fearn Sarah, Cavallaro Andrea, Prochazka Michal, Gutsche Alexander, Heymann Lisa, Guo Jia, Yasin Liam, Cooper Samuel J, Mayer Joachim, Rheinheimer Wolfgang, Dittmann Regina, Waser Rainer, Guillon Olivier, Lenser Christian, Skinner Stephen J, Aguadero Ainara, Nemšák Slavomír, Gunkel Felix

机构信息

Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom.

出版信息

Nat Commun. 2024 Nov 9;15(1):9724. doi: 10.1038/s41467-024-54008-4.

Abstract

Exsolution reactions enable the synthesis of oxide-supported metal nanoparticles, which are desirable as catalysts in green energy conversion technologies. It is crucial to precisely tailor the nanoparticle characteristics to optimize the catalysts' functionality, and to maintain the catalytic performance under operation conditions. We use chemical (co)-doping to modify the defect chemistry of exsolution-active perovskite oxides and examine its influence on the mass transfer kinetics of Ni dopants towards the oxide surface and on the subsequent coalescence behavior of the exsolved nanoparticles during a continuous thermal reduction treatment. Nanoparticles that exsolve at the surface of the acceptor-type fast-oxygen-ion-conductor SrTiNiO (STNi) show a high surface mobility leading to a very low thermal stability compared to nanoparticles that exsolve at the surface of donor-type SrTiNbNiO (STNNi). Our analysis indicates that the low thermal stability of exsolved nanoparticles at the acceptor-doped perovskite surface is linked to a high oxygen vacancy concentration at the nanoparticle-oxide interface. For catalysts that require fast oxygen exchange kinetics, exsolution synthesis routes in dry hydrogen conditions may hence lead to accelerated degradation, while humid reaction conditions may mitigate this failure mechanism.

摘要

析离反应能够合成氧化物负载的金属纳米颗粒,这些纳米颗粒在绿色能源转换技术中作为催化剂是很理想的。精确调整纳米颗粒的特性以优化催化剂的功能,并在操作条件下保持催化性能至关重要。我们使用化学(共)掺杂来改变析离活性钙钛矿氧化物的缺陷化学,并研究其对镍掺杂剂向氧化物表面的传质动力学以及连续热还原处理过程中析离纳米颗粒后续聚结行为的影响。与在施主型SrTiNbNiO(STNNi)表面析离的纳米颗粒相比,在受主型快氧离子导体SrTiNiO(STNi)表面析离的纳米颗粒表现出高表面迁移率,导致热稳定性非常低。我们的分析表明,受主掺杂钙钛矿表面析离纳米颗粒的低热稳定性与纳米颗粒 - 氧化物界面处的高氧空位浓度有关。因此,对于需要快速氧交换动力学的催化剂,在干燥氢气条件下的析离合成路线可能会导致加速降解,而潮湿的反应条件可能会减轻这种失效机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eeb/11550403/93ac952a64ae/41467_2024_54008_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验