Department of Cell and Molecular Biology, Uppsala Universitet, Uppsala, Sweden.
Institute for Comparative Genomics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.
Nat Commun. 2024 Nov 9;15(1):9726. doi: 10.1038/s41467-024-54102-7.
Symbiotic relationships between eukaryotes and prokaryotes played pivotal roles in the evolution of life and drove the emergence of specialized symbiotic structures in animals, plants and fungi. The host-evolved symbiotic structures of microbial eukaryotes - the vast majority of such hosts in nature - remain largely unstudied. Here we describe highly structured symbiosomes within three free-living anaerobic protists (Anaeramoeba spp.). We dissect this symbiosis using complete genome sequencing and transcriptomics of host and symbiont cells coupled with fluorescence in situ hybridization, and 3D reconstruction using focused-ion-beam scanning electron microscopy. The emergence of the symbiosome is underpinned by expansion of gene families encoding regulators of membrane trafficking and phagosomal maturation and extensive bacteria-to-eukaryote lateral transfer. The symbionts reside deep within a symbiosomal membrane network that enables metabolic syntrophy by precisely positioning sulfate-reducing bacteria alongside host hydrogenosomes. Importantly, the symbionts maintain connections to the Anaeramoeba plasma membrane, blurring traditional boundaries between ecto- and endosymbiosis.
真核生物和原核生物之间的共生关系在生命进化中发挥了关键作用,并促使动物、植物和真菌中专门的共生结构的出现。微生物真核生物(自然界中绝大多数此类宿主)中宿主进化而来的共生结构在很大程度上仍未得到研究。在这里,我们描述了三种自由生活的厌氧原生动物(Anaeramoeba spp.)中的高度结构化共生体。我们使用宿主和共生细胞的全基因组测序和转录组学,结合荧光原位杂交和聚焦离子束扫描电子显微镜的 3D 重建,来剖析这种共生关系。共生体的出现是由膜运输和吞噬体成熟调节剂基因家族的扩张以及广泛的细菌到真核生物的侧向转移所支撑的。共生体位于共生体膜网络的深处,通过将硫酸盐还原菌与宿主氢体精确地定位在一起,实现了代谢共营养。重要的是,共生体与 Anaeramoeba 质膜保持连接,模糊了外共生和内共生之间的传统界限。