Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden.
Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic.
Curr Biol. 2021 Dec 20;31(24):5605-5612.e5. doi: 10.1016/j.cub.2021.10.010. Epub 2021 Oct 27.
Discoveries of diverse microbial eukaryotes and their inclusion in comprehensive phylogenomic analyses have crucially re-shaped the eukaryotic tree of life in the 21st century. At the deepest level, eukaryotic diversity comprises 9-10 "supergroups." One of these supergroups, the Metamonada, is particularly important to our understanding of the evolutionary dynamics of eukaryotic cells, including the remodeling of mitochondrial function. All metamonads thrive in low-oxygen environments and lack classical aerobic mitochondria, instead possessing mitochondrion-related organelles (MROs) with metabolisms that are adapted to low-oxygen conditions. These MROs lack an organellar genome, do not participate in the Krebs cycle and oxidative phosphorylation, and often synthesize ATP by substrate-level phosphorylation coupled to hydrogen production. The events that occurred during the transition from an oxygen-respiring mitochondrion to a functionally streamlined MRO early in metamonad evolution remain largely unknown. Here, we report transcriptomes of two recently described, enigmatic, anaerobic protists from the genus Anaeramoeba. Using phylogenomic analysis, we show that these species represent a divergent, phylum-level lineage in the tree of metamonads, emerging as a sister group of the Parabasalia and reordering the deep branching order of the metamonad tree. Metabolic reconstructions of the Anaeramoeba MROs reveal many "classical" mitochondrial features previously not seen in metamonads, including a disulfide relay import system, propionate production, and amino acid metabolism. Our findings suggest that the cenancestor of Metamonada likely had MROs with more classical mitochondrial features than previously anticipated and demonstrate how discoveries of novel lineages of high taxonomic rank continue to transform our understanding of early eukaryote evolution.
发现多样化的微生物真核生物,并将其纳入综合系统基因组学分析,这在 21 世纪极大地重塑了真核生物的生命树。在最深的层次上,真核生物多样性包括 9-10 个“超级群”。其中一个超级群,变形体门,对于我们理解真核细胞的进化动态,包括重塑线粒体功能,具有特别重要的意义。所有变形体门生物都在低氧环境中茁壮成长,缺乏经典的需氧线粒体,而是拥有与低氧条件相适应的代谢功能的类线粒体细胞器(MRO)。这些 MRO 缺乏细胞器基因组,不参与三羧酸循环和氧化磷酸化,并且通常通过与产氢偶联的底物水平磷酸化合成 ATP。在变形体门生物早期从需氧线粒体向功能简化的 MRO 过渡期间发生的事件在很大程度上仍然未知。在这里,我们报告了最近描述的两种神秘的厌氧原生动物属 Anaeramoeba 的转录组。通过系统基因组学分析,我们表明这些物种代表了变形体门的树中一个分化的、门级谱系,作为 Parabasalia 的姐妹群出现,并重新排列了变形体门树的深分支顺序。Anaeramoeba MRO 的代谢重建揭示了许多以前在变形体门中未见过的“经典”线粒体特征,包括二硫键中继导入系统、丙酸产生和氨基酸代谢。我们的研究结果表明,变形体门的原祖可能具有比以前预期更具经典线粒体特征的 MRO,并展示了如何发现新的高分类群的谱系继续改变我们对早期真核生物进化的理解。