Department of Chemistry, Faculty of Sciences of Gabes, University of Gabes, Gabes, 6072, Tunisia.
Department of Chemistry and Earth Sciences, College of Arts and Science, Qatar University, PO Box 2713, Doha, Qatar.
Chemosphere. 2020 Dec;260:127558. doi: 10.1016/j.chemosphere.2020.127558. Epub 2020 Jul 10.
In this work, the degradation of chloroquine (CLQ), an antiviral and antimalarial drug, using electro-Fenton oxidation was investigated. Due to the importance of hydrogen peroxide (HO) generation during electro-Fenton oxidation, effects of pH, current density, molecular oxygen (O) flow rate, and anode material on HO generation were evaluated. HO generation was enhanced by increasing the current density up to 60 mA/cm and the O flow rate up to 80 mL/min at pH 3.0 and using carbon felt cathode and boron-doped diamond (BDD) anode. Electro-Fenton-BDD oxidation achieved the total CLQ depletion and 92% total organic carbon (TOC) removal. Electro-Fenton-BDD oxidation was more effective than electro-Fenton-Pt and anodic oxidation using Pt and BDD anodes. The efficiency of CLQ depletion by electro-Fenton-BDD oxidation raises by increasing the current density and Fe dose; however it drops with the increase of pH and CLQ concentration. CLQ depletion follows a pseudo-first order kinetics in all the experiments. The identification of CLQ degradation intermediates by chromatography methods confirms the formation of 7-chloro-4-quinolinamine, oxamic, and oxalic acids. Quantitative amounts of chlorides, nitrates, and ammonium ions are released during electro-Fenton oxidation of CLQ. The high efficiency of electro-Fenton oxidation derives from the generation of hydroxyl radicals from the catalytic decomposition of HO by Fe in solution, and the electrogeneration of hydroxyl and sulfates radicals and other strong oxidants (persulfates) from the oxidation of the electrolyte at the surface BDD anode. Electro-Fenton oxidation has the potential to be an alternative method for treating wastewaters contaminated with CLQ and its derivatives.
在这项工作中,研究了使用电芬顿氧化法降解抗疟药氯喹(CLQ)。由于在电芬顿氧化过程中过氧化氢(HO)的生成非常重要,因此评估了 pH 值、电流密度、分子氧(O)流速和阳极材料对 HO 生成的影响。在 pH 值为 3.0 时,通过将电流密度提高到 60 mA/cm 和 O 流速提高到 80 mL/min,并使用碳纤维毡阴极和掺硼金刚石(BDD)阳极,可以增强 HO 的生成。电芬顿-BDD 氧化实现了 CLQ 的完全耗尽和 92%的总有机碳(TOC)去除。电芬顿-BDD 氧化比电芬顿-Pt 和使用 Pt 和 BDD 阳极的阳极氧化更有效。通过增加电流密度和 Fe 剂量,可以提高电芬顿-BDD 氧化去除 CLQ 的效率;然而,随着 pH 值和 CLQ 浓度的增加,效率会下降。在所有实验中,CLQ 的耗尽遵循准一级动力学。通过色谱方法鉴定 CLQ 降解中间体证实了 7-氯-4-喹啉胺、氨基乙二酸和草酸的形成。在 CLQ 的电芬顿氧化过程中,会释放出大量的氯化物、硝酸盐和铵离子。电芬顿氧化的高效率源于溶液中 Fe 催化分解 HO 生成羟基自由基,以及 BDD 阳极表面氧化电解质产生羟基、过硫酸盐自由基和其他强氧化剂(过硫酸盐)。电芬顿氧化有可能成为处理含有 CLQ 及其衍生物的废水的替代方法。