Suppr超能文献

使用密度泛函涨落理论对种族隔离城市中的小区域人口进行预测。

Small-area population forecasting in a segregated city using density-functional fluctuation theory.

作者信息

Chen Yuchao, Kinkhabwala Yunus A, Barron Boris, Hall Matthew, Arias Tomás A, Cohen Itai

机构信息

Department of Physics, Cornell University, Ithaca, NY 14850 USA.

Department of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850 USA.

出版信息

J Comput Soc Sci. 2024;7(3):2255-2275. doi: 10.1007/s42001-024-00305-3. Epub 2024 Aug 28.

Abstract

Policy decisions concerning housing, transportation, and resource allocation would all benefit from accurate small-area population forecasts. However, despite the success of regional-scale migration models, developing neighborhood-scale forecasts remains a challenge due to the complex nature of residential choice. Here, we introduce an innovative approach to this challenge by extending density-functional fluctuation theory (DFFT), a proven approach for modeling group spatial behavior in biological systems, to predict small-area population shifts over time. The DFFT method uses observed fluctuations in small-area populations to disentangle and extract effective social and spatial drivers of segregation, and then uses this information to forecast intra-regional migration. To demonstrate the efficacy of our approach in a controlled setting, we consider a simulated city constructed from a Schelling-type model. Our findings indicate that even without direct access to the underlying agent preferences, DFFT accurately predicts how broader demographic changes at the city scale percolate to small-area populations. In particular, our results demonstrate the ability of DFFT to incorporate the impacts of segregation into small-area population forecasting using interactions inferred solely from steady-state population count data.

摘要

有关住房、交通和资源分配的政策决策都将受益于准确的小区域人口预测。然而,尽管区域尺度的迁移模型取得了成功,但由于居住选择的复杂性,制定邻里尺度的预测仍然是一项挑战。在此,我们通过扩展密度泛函涨落理论(DFFT)(一种用于模拟生物系统中群体空间行为的成熟方法)来预测小区域人口随时间的变化,从而为这一挑战引入一种创新方法。DFFT方法利用小区域人口中观察到的涨落来解开并提取隔离的有效社会和空间驱动因素,然后利用这些信息预测区域内迁移。为了在可控环境中证明我们方法的有效性,我们考虑一个由谢林型模型构建的模拟城市。我们的研究结果表明,即使无法直接获取潜在的主体偏好,DFFT也能准确预测城市尺度上更广泛的人口变化如何渗透到小区域人口中。特别是,我们的结果证明了DFFT能够利用仅从稳态人口计数数据推断出的相互作用,将隔离的影响纳入小区域人口预测中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验