Li Tang, Blok Pieter M, Burridge James, Kaga Akito, Guo Wei
Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
Institute of Crop Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
Plant Phenomics. 2024 Nov 10;6:0260. doi: 10.34133/plantphenomics.0260. eCollection 2024.
The increase in the global population is leading to a doubling of the demand for protein. Soybean (), a key contributor to global plant-based protein supplies, requires ongoing yield enhancements to keep pace with increasing demand. Precise, on-plant seed counting and localization may catalyze breeding selection of shoot architectures and seed localization patterns related to superior performance in high planting density and contribute to increased yield. Traditional manual counting and localization methods are labor-intensive and prone to error, necessitating more efficient approaches for yield prediction and seed distribution analysis. To solve this, we propose MSANet: a novel deep learning framework tailored for counting and localization of soybean seeds on mature field-grown soy plants. A multi-scale attention map mechanism was applied to maximize model performance in seed counting and localization in soybean breeding fields. We compared our model with a previous state-of-the-art model using the benchmark dataset and an enlarged dataset, including various soybean genotypes. Our model outperforms previous state-of-the-art methods on all datasets across various soybean genotypes on both counting and localization tasks. Furthermore, our model also performed well on in-canopy 360° video, dramatically increasing data collection efficiency. We also propose a technique that enables previously inaccessible insights into the phenotypic and genetic diversity of single plant vertical seed distribution, which may accelerate the breeding process. To accelerate further research in this domain, we have made our dataset and software publicly available: https://github.com/UTokyo-FieldPhenomics-Lab/MSANet.
全球人口的增长导致蛋白质需求增加了一倍。大豆作为全球植物性蛋白质供应的关键贡献者,需要不断提高产量以跟上需求的增长。精确的植株上种子计数和定位可以促进与高种植密度下优异表现相关的茎秆结构和种子定位模式的育种选择,并有助于提高产量。传统的人工计数和定位方法劳动强度大且容易出错,因此需要更有效的方法来进行产量预测和种子分布分析。为了解决这个问题,我们提出了MSANet:一种专门为在成熟田间种植的大豆植株上进行大豆种子计数和定位而定制的新型深度学习框架。应用了多尺度注意力图机制,以最大限度地提高大豆育种田种子计数和定位的模型性能。我们使用基准数据集和包括各种大豆基因型的扩大数据集,将我们的模型与先前的最先进模型进行了比较。在各种大豆基因型的所有数据集上,我们的模型在计数和定位任务上均优于先前的最先进方法。此外,我们的模型在冠层内360°视频上也表现良好,极大地提高了数据收集效率。我们还提出了一种技术,能够对单株垂直种子分布的表型和遗传多样性进行以前无法获得的洞察,这可能会加速育种过程。为了加速该领域的进一步研究,我们已将我们的数据集和软件公开提供:https://github.com/UTokyo-FieldPhenomics-Lab/MSANet。