Suppr超能文献

预测“疼痛基因”:使用概率分类器和相互作用网络进行多模态数据整合

Predicting 'pain genes': multi-modal data integration using probabilistic classifiers and interaction networks.

作者信息

Zhao Na, Bennett David L, Baskozos Georgios, Barry Allison M

机构信息

Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom.

出版信息

Bioinform Adv. 2024 Oct 18;4(1):vbae156. doi: 10.1093/bioadv/vbae156. eCollection 2024.

Abstract

MOTIVATION

Accurate identification of pain-related genes remains challenging due to the complex nature of pain pathophysiology and the subjective nature of pain reporting in humans. Here, we use machine learning to identify possible 'pain genes'. Labelling was based on a gold-standard list with validated involvement across pain conditions, and was trained on a selection of -omics, protein-protein interaction network features, and biological function readouts for each gene.

RESULTS

The top-performing model was selected to predict a 'pain score' per gene. The top-ranked genes were then validated against pain-related human SNPs. Functional analysis revealed JAK2/STAT3 signal, ErbB, and Rap1 signalling pathways as promising targets for further exploration, while network topological features contribute significantly to the identification of 'pain' genes. As such, a network based on top-ranked genes was constructed to reveal previously uncharacterized pain-related genes. Together, these novel insights into pain pathogenesis can indicate promising directions for future experimental research.

AVAILABILITY AND IMPLEMENTATION

These analyses can be further explored using the linked open-source database at https://livedataoxford.shinyapps.io/drg-directory/, which is accompanied by a freely accessible code template and user guide for wider adoption across disciplines.

摘要

动机

由于疼痛病理生理学的复杂性以及人类疼痛报告的主观性,准确识别与疼痛相关的基因仍然具有挑战性。在此,我们使用机器学习来识别可能的“疼痛基因”。标记基于一份经过验证的、涉及多种疼痛状况的金标准列表,并针对每个基因的一系列组学、蛋白质 - 蛋白质相互作用网络特征和生物学功能读数进行训练。

结果

选择表现最佳的模型来预测每个基因的“疼痛评分”。然后根据与疼痛相关的人类单核苷酸多态性(SNP)对排名靠前的基因进行验证。功能分析表明,JAK2/STAT3信号通路、表皮生长因子受体(ErbB)和Rap1信号通路是值得进一步探索的有前景的靶点,而网络拓扑特征对“疼痛”基因的识别有显著贡献。因此,构建了一个基于排名靠前基因的网络,以揭示以前未被表征的与疼痛相关的基因。总之,这些对疼痛发病机制的新见解可为未来的实验研究指明有前景的方向。

可用性与实现方式

可使用https://livedataoxford.shinyapps.io/drg - directory/上的链接开源数据库进一步探索这些分析,该数据库还附带一个可免费访问的代码模板和用户指南,以便跨学科更广泛地采用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ec4/11549022/6187b4825547/vbae156f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验