Suppr超能文献

构建多模态转录组-小分子相互作用网络用于高通量测量以研究人类复杂性状

Construction of Multi-Modal Transcriptome-Small Molecule Interaction Networks from High-Throughput Measurements to Study Human Complex Traits.

作者信息

Akbary Moghaddam Vaha, Acharya Sandeep, Schwaiger-Haber Michaela, Liao Shu, Jung Wooseok J, Thyagarajan Bharat, Shriver Leah P, Daw E Warwick, Saccone Nancy L, An Ping, Brent Michael R, Patti Gary J, Province Michael A

机构信息

Department of Genetics, School of Medicine, Washington University in St. Louis, MO, USA.

Division of Computational & Data Sciences, McKelvey School of Engineering, Washington University in St. Louis, MO, USA.

出版信息

bioRxiv. 2025 Jan 23:2025.01.22.634403. doi: 10.1101/2025.01.22.634403.

Abstract

Small molecules (SMs) are integral to biological processes, influencing metabolism, homeostasis, and regulatory networks. Despite their importance, a significant knowledge gap exists regarding their downstream effects on biological pathways and gene expression, largely due to differences in scale, variability, and noise between untargeted metabolomics and sequencing-based technologies. To address these challenges, we developed a multi-omics framework comprising a machine learning-based protocol for data processing, a semi-supervised network inference approach, and network-guided analysis of complex traits. The ML protocol harmonized metabolomic, lipidomic, and transcriptomic data through batch correction, principal component analysis, and regression-based adjustments, enabling unbiased and effective integration. Building on this, we proposed a semi-supervised method to construct transcriptome-SM interaction networks (TSI-Nets) by selectively integrating SM profiles into gene-level networks using a meta-analytic approach that accounts for scale differences and missing data across omics layers. Benchmarking against three conventional unsupervised methods demonstrated the superiority of our approach in generating diverse, biologically relevant, and robust networks. While single-omics analyses identified 18 significant genes and 3 significant SMs associated with insulin sensitivity (IS), network-guided analysis revealed novel connections between these markers. The top-ranked module highlighted a cross-talk between fiber-degrading gut microbiota and immune regulatory pathways, inferred by the interaction of the protective SM, N-acetylglycine (NAG), with immune genes (, , , and ), linked to improved IS and reduced obesity and inflammation. Together, this framework offers a robust and scalable solution for multi-modal network inference and analysis, advancing SM pathway discovery and their implications for human health. Leveraging data from a population of thousands of individuals with extended longevity, the inferred TSI-Nets demonstrate generalizability across diverse conditions and complex traits. These networks are publicly available as a resource for the research community.

摘要

小分子(SMs)是生物过程不可或缺的一部分,影响着新陈代谢、体内平衡和调节网络。尽管它们很重要,但在其对生物途径和基因表达的下游影响方面仍存在重大知识空白,这主要是由于非靶向代谢组学和基于测序的技术在规模、变异性和噪声方面存在差异。为应对这些挑战,我们开发了一个多组学框架,该框架包括用于数据处理的基于机器学习的协议、半监督网络推理方法以及对复杂性状的网络引导分析。机器学习协议通过批次校正、主成分分析和基于回归的调整来协调代谢组学、脂质组学和转录组学数据,实现无偏且有效的整合。在此基础上,我们提出了一种半监督方法,通过使用一种元分析方法将SM谱选择性地整合到基因水平网络中,构建转录组 - SM相互作用网络(TSI - Nets),该方法考虑了组学层之间的规模差异和缺失数据。与三种传统无监督方法的基准测试表明,我们的方法在生成多样、生物学相关且稳健的网络方面具有优越性。虽然单组学分析确定了18个与胰岛素敏感性(IS)相关的显著基因和3个显著的SMs,但网络引导分析揭示了这些标志物之间的新联系。排名靠前的模块突出了纤维降解肠道微生物群与免疫调节途径之间的相互作用,这是由保护性SM,N - 乙酰甘氨酸(NAG)与免疫基因( 、 、 和 )的相互作用推断出来的,与改善的IS以及降低的肥胖和炎症有关。总之,这个框架为多模态网络推理和分析提供了一个强大且可扩展的解决方案,推动了SM途径的发现及其对人类健康的影响。利用来自数千名长寿个体群体的数据,推断出的TSI - Nets在不同条件和复杂性状下具有通用性。这些网络作为研究社区的资源公开可用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8b9/11785221/f7a2a35bae53/nihpp-2025.01.22.634403v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验