Suppr超能文献

三种主要急性心血管事件的时空分布、预测及关系:院外心脏骤停、ST段抬高型心肌梗死和中风。

Spatio-temporal distribution, prediction and relationship of three major acute cardiovascular events: Out-of-hospital cardiac arrest, ST-elevation myocardial infarction and stroke.

作者信息

Auricchio Angelo, Scquizzato Tommaso, Ravenda Federico, Cresta Ruggero, Peluso Stefano, Caputo Maria Luce, Tonazzi Stefano, Benvenuti Claudio, Mira Antonietta

机构信息

Department of Cardiology, Cardiocentro Ticino Institute-EOC, Lugano, Switzerland.

Fondazione Ticino Cuore, Lugano, Switzerland.

出版信息

Resusc Plus. 2024 Oct 30;20:100810. doi: 10.1016/j.resplu.2024.100810. eCollection 2024 Dec.

Abstract

BACKGROUND

Predicting the incidence of time-sensitive cardiovascular diseases like out-of-hospital cardiac arrest (OHCA), ST-elevation myocardial infarction (STEMI), and stroke can reduce time to treatment and improve outcomes. This study analysed the spatio-temporal distribution of OHCAs, STEMIs, and strokes, their spatio-temporal correlation, and the performance of different prediction algorithms.

METHODS

Adults who experienced an OHCA, STEMI, or stroke in Canton Ticino, Switzerland from 2005 to 2022 were included. Datasets were divided into training and validation samples. To estimate and predict the yearly per-capita population incidences of OHCA, STEMI, and stroke, the integrated nested Laplace approximation (INLA), machine learning meta model (MLMM), the Naïve prediction method, and the exponential moving average were employed and compared. The relationship between OHCA, STEMI, and stroke was assessed by predicting the incidence of one condition, considering the lagged incidence of the other two as explanatory variables.

RESULTS

We included 3,906 OHCAs, 2,162 STEMIs, and 2,536 stroke patients. INLA and MLMM yearly predicted incidence OHCA, STEMI, and stroke at municipality level with very high accuracy, outperforming the Naïve forecasting and the exponential moving average. INLA exhibited errors of zero or one event in 82%, 87%, and 72% of municipalities for OHCA, STEMI, and stroke, respectively, whereas ML had errors in 81%, 89%, and 71% of municipalities for the same conditions. INLA had a prediction error of 0.87, 0.77, and 1.50 events per year per municipality for OHCA, STEMI and stroke, whereas MLMM of 0.70, 0.74, and 1.09 events, respectively. Including in the INLA model the lagged absolute values of the other conditions as covariates improved the prediction of OHCA and stroke but not STEMI. MLMM predictions were consistently the most accurate and did not benefit from the inclusion of the other conditions as covariates. All the three diseases showed a similar spatial pattern.

CONCLUSIONS

Prediction of incidence of OHCA, STEMI, and stroke is possible with very high accuracy using INLA and MLMM models. A robust spatio-temporal correlation between the 3 pathologies exists. Widespread implementation in clinical practice of prediction algorithms may allow to improve resource allocation, reduce treatment delays, and improve outcomes.

摘要

背景

预测院外心脏骤停(OHCA)、ST段抬高型心肌梗死(STEMI)和中风等对时间敏感的心血管疾病的发病率,可以缩短治疗时间并改善治疗结果。本研究分析了OHCA、STEMI和中风的时空分布、它们的时空相关性以及不同预测算法的性能。

方法

纳入2005年至2022年在瑞士提契诺州经历过OHCA、STEMI或中风的成年人。数据集被分为训练样本和验证样本。为了估计和预测OHCA、STEMI和中风的年人均发病率,采用并比较了集成嵌套拉普拉斯近似法(INLA)、机器学习元模型(MLMM)、朴素预测法和指数移动平均法。通过将另外两种疾病的滞后发病率作为解释变量来预测一种疾病的发病率,评估OHCA、STEMI和中风之间的关系。

结果

我们纳入了3906例OHCA患者、2162例STEMI患者和2536例中风患者。INLA和MLMM在市级层面每年对OHCA、STEMI和中风发病率的预测准确率非常高,优于朴素预测法和指数移动平均法。对于OHCA、STEMI和中风,INLA在分别82%、87%和72%的市镇中预测误差为零或一事件,而对于相同情况,ML在81%、89%和71%的市镇中存在误差。对于OHCA、STEMI和中风,INLA在每个市镇每年的预测误差分别为0.87、0.77和1.50事件,而MLMM分别为0.70、0.74和1.09事件。在INLA模型中纳入其他疾病的滞后绝对值作为协变量,改善了OHCA和中风的预测,但对STEMI没有效果。MLMM的预测始终是最准确的,并且没有因纳入其他疾病作为协变量而受益。这三种疾病都呈现出相似的空间模式。

结论

使用INLA和MLMM模型可以非常准确地预测OHCA、STEMI和中风的发病率。这三种疾病之间存在强大的时空相关性。在临床实践中广泛应用预测算法可能有助于改善资源分配、减少治疗延误并改善治疗结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db47/11550346/bfe00f12e21a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验