Suppr超能文献

用于预测院外心脏骤停高发日的机器学习算法。

Machine learning algorithms for predicting days of high incidence for out-of-hospital cardiac arrest.

机构信息

Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo, Chiba, 260-8677, Japan.

Smart119 Inc, 2-5-1, Chuo, Chiba, Japan.

出版信息

Sci Rep. 2023 Jun 19;13(1):9950. doi: 10.1038/s41598-023-36270-6.

Abstract

Predicting out-of-hospital cardiac arrest (OHCA) events might improve outcomes of OHCA patients. We hypothesized that machine learning algorithms using meteorological information would predict OHCA incidences. We used the Japanese population-based repository database of OHCA and weather information. The Tokyo data (2005-2012) was used as the training cohort and datasets of the top six populated prefectures (2013-2015) as the test. Eight various algorithms were evaluated to predict the high-incidence OHCA days, defined as the daily events exceeding 75% tile of our dataset, using meteorological and chronological values: temperature, humidity, air pressure, months, days, national holidays, the day before the holidays, the day after the holidays, and New Year's holidays. Additionally, we evaluated the contribution of each feature by Shapley Additive exPlanations (SHAP) values. The training cohort included 96,597 OHCA patients. The eXtreme Gradient Boosting (XGBoost) had the highest area under the receiver operating curve (AUROC) of 0.906 (95% confidence interval; 0.868-0.944). In the test cohorts, the XGBoost algorithms also had high AUROC (0.862-0.923). The SHAP values indicated that the "mean temperature on the previous day" impacted the most on the model. Algorithms using machine learning with meteorological and chronological information could predict OHCA events accurately.

摘要

预测院外心脏骤停(OHCA)事件可能会改善 OHCA 患者的预后。我们假设使用气象信息的机器学习算法可以预测 OHCA 的发生率。我们使用了日本基于人群的 OHCA 和气象信息数据库。东京的数据(2005-2012 年)被用作训练队列,而六个人口最多的县的数据(2013-2015 年)被用作测试队列。使用气象和时间值评估了八种不同的算法来预测高发生率的 OHCA 日,定义为每日事件超过我们数据集 75%分位数的日子:温度、湿度、气压、月份、天数、国定假日、假日前一天、假日后一天和新年假期。此外,我们通过 Shapley Additive exPlanations (SHAP) 值评估了每个特征的贡献。训练队列包括 96597 名 OHCA 患者。极端梯度提升(XGBoost)的接收者操作特征曲线(AUROC)最高,为 0.906(95%置信区间为 0.868-0.944)。在测试队列中,XGBoost 算法也具有较高的 AUROC(0.862-0.923)。SHAP 值表明,“前一天的平均温度”对模型的影响最大。使用机器学习和气象与时间信息的算法可以准确预测 OHCA 事件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7b0/10279733/a836f7cf6271/41598_2023_36270_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验