Sears Isaac, Garcia-Agundez Augusto, Zerveas George, Rudman William, Mercurio Laura, Ventetuolo Corey E, Abbasi Adeel, Eickhoff Carsten
Warren Alpert Medical School at Brown University, Providence, RI.
Department of Computer Science, Brown University, Providence, RI.
Comput Cardiol (2010). 2023 Oct;50. doi: 10.22489/CinC.2023.308. Epub 2023 Dec 26.
In response to the 2023 George B. Moody PhysioNet Challenge, we propose an automated, unsupervised pre-training approach to boost the performance of models that predict neurologic outcomes after cardiac arrest. Our team, (BrownBAI), developed a model architecture consisting of three parts: a pre-processor to convert raw electroencephalograms (EEGs) into two-dimensional spectrograms, a three-layer convolutional neural network (CNN) encoder for unsupervised pre-training, and a time series transformer (TST) model. We trained the CNN encoder on unlabeled five-minute EEG samples from the Temple University EEG Corpus (TUEG), which included more than 20x the patients available in the PhysioNet competition training dataset. We then incorporated the pre-trained encoder into the TST as a base layer and trained the composite model as a classifier on EEGs from the 2023 PhysioNet Challenge dataset. Our team was not able to submit an official competition entry and was therefore not scored on the test set. However, in a side-by-side comparison on the competition training dataset, our model performed better with a pretrained (competition score 0.351), rather than randomly initialized (competition score 0.211) CNN encoder layer. These results show the potential benefits of leveraging unlabeled data to boost task-specific performance of predictive EEG models.
为响应2023年乔治·B·穆迪生理信号挑战赛,我们提出一种自动化的无监督预训练方法,以提高预测心脏骤停后神经学结果的模型性能。我们的团队(BrownBAI)开发了一种由三部分组成的模型架构:一个将原始脑电图(EEG)转换为二维频谱图的预处理器、一个用于无监督预训练的三层卷积神经网络(CNN)编码器以及一个时间序列变压器(TST)模型。我们在来自天普大学脑电图语料库(TUEG)的未标记五分钟脑电图样本上训练CNN编码器,该语料库中的患者数量是生理信号挑战赛训练数据集中患者数量的20多倍。然后,我们将预训练的编码器作为基础层并入TST,并在2023年生理信号挑战赛数据集的脑电图上作为分类器训练复合模型。我们的团队未能提交正式的竞赛参赛作品,因此未在测试集上评分。然而,在竞赛训练数据集的并列比较中,我们的模型在使用预训练的(竞赛分数0.351)而不是随机初始化的(竞赛分数0.211)CNN编码器层时表现更好。这些结果表明利用未标记数据提高预测性脑电图模型特定任务性能的潜在好处。